【題目】某工廠今年前三個月生產(chǎn)某種產(chǎn)品的數(shù)量統(tǒng)計表如下:

為了估測以后每個月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬產(chǎn)品的月產(chǎn)量與月份的關系,模擬函數(shù)可選擇二次函數(shù)為常數(shù)且),或函數(shù)為常數(shù)).已知4月份的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作為模擬函數(shù)較好,請說明理由.

【答案】選用y=﹣0.8×0.5x+1.4作為模擬函數(shù)更好,理由見解析

【解析】

分別求出兩函數(shù)解析式,預算第四個月的產(chǎn)量,根據(jù)誤差大小作出判斷.

若選擇二次函數(shù)模型,則,

解得,∴fx)=﹣0.05x2+0.35x+0.7

f4)=1.3,

若選擇函數(shù)模型,則

解得,∴gx)=﹣0.8×0.5x+1.4

g4)=1.35

顯然g4)更接近于1.37,

故選用y=﹣0.8×0.5x+1.4作為模擬函數(shù)更好.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,若,且的圖象相鄰的對稱軸間的距離不小于.

(1)求的取值范圍.

(2)若當取最大值時, ,且在中, 分別是角的對邊,其面積,求周長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對唐三彩的復制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過程中,對仿制的100件工藝品測得其重量(單位: )數(shù)據(jù),將數(shù)據(jù)分組如下表:

1)在答題卡上完成頻率分布表;

2)以表中的頻率作為概率,估計重量落在中的概率及重量小于2.45的概率是多少?

3統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值例如區(qū)間的中點值是2.25作為代表.據(jù)此,估計這100個數(shù)據(jù)的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調性并求極值;

(Ⅱ)若點在函數(shù)上,當,且時,證明: 是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取記錄如下:

甲: , , , , , ,

乙: , , , , ,

用莖葉圖表示這兩組數(shù)據(jù).

)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度考慮,你認為派哪位學生參加合適?請說明理由

)若將頻率視為概率,對甲同學在今后的三次數(shù)學競賽成績進行預測,記這次成績中高于分的次數(shù)為,求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的值域

(2)把函數(shù)圖象所有點的上橫坐標縮短為原來的倍,再把所得的圖象向左平移個單位長度,再把所得的圖象向下平移1個單位長度,得到函數(shù) 若函數(shù)關于點對稱

i)求函數(shù)的解析式;

ii)求函數(shù)單調遞增區(qū)間及對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市甲水廠每天生產(chǎn)萬噸的生活用水,其每天固定生產(chǎn)成本為萬元,居民用水的稅費價格為每噸元,該市居民每天用水需求量是在(單位:萬噸)內的隨機數(shù),經(jīng)市場調查,該市每天用水需求量的頻率分布直方圖如圖所示,設(單位:萬噸, )表示該市一天用水需求量(單位:萬元)表示甲水廠一天銷售生活用水的利潤(利潤=稅費收入-固定生產(chǎn)成本),注:當該市用水需求量超過萬噸時,超過的部分居民可以用其他水廠生產(chǎn)的水,甲水廠只收成本廠供應的稅費,該市每天用水需求量的概率用頻率估計.

(1)求的值,并直接寫出表達式;

(2)求甲水廠每天的利潤不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個關于圓錐曲線的命題:

①設A,B是兩個定點,k為非零常數(shù),若|PA|-|PB|=k,則P的軌跡是雙曲線;

②過定圓C上一定點A作圓的弦AB,O為原點,若.則動點P的軌跡是橢圓;

③方程的兩根可以分別作為橢圓和雙曲線的離心率;

④雙曲線與橢圓有相同的焦點.

其中正確命題的序號為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201818日,中共中央國務院隆重舉行國家科學技術獎勵大會,在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領經(jīng)濟社會發(fā)展的強勁動力.某科研單位在研發(fā)新產(chǎn)品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標值y與這種新材料的含量x(單位:克)的關系為:當時,yx的二次函數(shù);當時,測得數(shù)據(jù)如下表(部分):

x(單位:克)

0

1

2

9

y

0

3

1)求y關于x的函數(shù)關系式;

2)當該產(chǎn)品中的新材料含量x為何值時,產(chǎn)品的性能指標值最大.

查看答案和解析>>

同步練習冊答案