【題目】已知函數(shù)是定義在R上的偶函數(shù),且當時,.

1)當時,求的表達式:

2)求在區(qū)間的最大值的表達式;

3)當時,若關于x的方程a,)恰有10個不同實數(shù)解,求a的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)偶函數(shù)的特點,可知,可得結果.

2)采用分類討論方法,,去掉絕對值研究函數(shù)在區(qū)間上的單調性,可得結果.

3)畫出函數(shù)圖像,利用換元法,得出,可轉化為兩個根為,可得,最后計算可得結果.

1)令,則

由當時,

所以

又函數(shù)是定義在R上的偶函數(shù),

所以

所以當時,

2)當時,

如圖

可知函數(shù)的最大值在處取得,

所以,

①若,此時

②若,此時;

時,,對稱軸為

③若,即時,則,

④若,即時,則

綜上,得

3)當時,

如圖

的圖象可知,

時,方程有兩解;

時,方程有四解;

時,方程有六解;

時,方程有三解;

時,方程無解.

要使方程a,

恰有10個不同實數(shù)解,

則關于t的方程的一個根為1,

另一個根,設,則有

所以a的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知長度為的線段的兩個端點分別在軸和軸上運動,動點滿足,設動點的軌跡為曲線.

1)求曲線的方程;

2)過點,且斜率不為零的直線與曲線交于兩點,在軸上是否存在定點,使得直線的斜率之積為常數(shù)?若存在,求出定點的坐標以及此常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,且橢圓上存在一點,滿足.

(1)求橢圓的標準方程;

(2)過橢圓右焦點的直線與橢圓交于不同的兩點,求的內(nèi)切圓的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線E1(a>0b>0)的右頂點為A,O為坐標原點,MOA的中點,若以AM為直徑的圓與E的漸近線相切,則雙曲線E的離心率等于( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

(1)設相交于兩點,求

(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學和法國調查公司益普索合作,調查了騰訊服務的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.

1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?

2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;

3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=8x的焦點,作傾斜角為45°的直線,則被拋物線截得的弦長為(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,底面,.

1)求證:平面;

2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案