(1)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
,直線l的參數(shù)方程為
x=1+2t
y=1+t
(t為參數(shù)),則直線l被曲線C截得的弦長為______.
(2)已知a,b為正數(shù),且直線2x-(b-3)y+6=0與直線bx+ay-5=0互相垂直,則2a+3b的最小值為______.
(1)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
,
可得
3cosθ=x-2
3sinθ=y+1
,結(jié)合cos2θ+sin2θ=1,可得
曲線C的直角坐標方程為:(x-2)2+(y+1)2=9
它是以M(2,-1)為圓心,半徑為3的圓
∵直線l的參數(shù)方程為
x=1+2t
y=1+t
(t為參數(shù)),
∴消去參數(shù)t得直線l的直角坐標方程為:x-2y+1=0
∴點M到直線l的距離為d=
|2-2×(-1)+1|
12+(-2)2
=
5

設(shè)直線l被曲線C截得的弦長為m,可得(
1
2
m)2+d2=R2=9
∴m=2
9-d2
=4

(2)∵直線2x-(b-3)y+6=0的斜率為k1=
2
b-3

直線bx+ay-5=0斜率為k2=-
b
a
,且兩互相垂直∴
k1k2=
2
b-3
•(-
b
a
)=-1
?3a+2b=ab?
2
a
+
3
b
=1

∴2a+3b=(
2
a
+
3
b
)(2a+3b)
=13+
6a
b
+
6b
a

∵a,b為正數(shù)
6a
b
+
6b
a
≥2
6a
b
6b
a
=12

當(dāng)且僅當(dāng)a=b=5時,等號成立,
可得2a+3b的最小值為13+12=25
故答案為:4,25
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
,直線l的參數(shù)方程為
x=1+2t
y=1+t
(t為參數(shù)),則直線l被曲線C截得的弦長為
4
4

(2)已知a,b為正數(shù),且直線2x-(b-3)y+6=0與直線bx+ay-5=0互相垂直,則2a+3b的最小值為
25
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(極坐標與參數(shù)方程選講選做題)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上的動點P(x,y)到直線l距離的最大值為
3+
7
10
10
3+
7
10
10

B.(不等式選講選做題)若存在實數(shù)x滿足不等式|x-3|+|x-5|<m2-m,則實數(shù)m的取值范圍為
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

C.(幾何證明選講選做題)如圖,PC切⊙O于點C,割線PAB經(jīng)過圓心O,弦CD⊥AB于點E.已知⊙O的半徑為3,PA=2,則PC=
4
4
.OE=
5
9
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江西省宜春市宜豐中學(xué)高二第二次模擬數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

(1)設(shè)曲線C的參數(shù)方程為,直線l的參數(shù)方程為(t為參數(shù)),則直線l被曲線C截得的弦長為   
(2)已知a,b為正數(shù),且直線2x-(b-3)y+6=0與直線bx+ay-5=0互相垂直,則2a+3b的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆江西省南昌市高三第一次模擬考試數(shù)學(xué)理卷 題型:填空題

(1)設(shè)曲線C的參數(shù)方程為,直線l的參數(shù)方程為(t為參數(shù)),則直線l被曲線C截得的弦長為        。[來源:學(xué)。科。網(wǎng)Z。X。X。K]
(2)已知a,b為正數(shù),且直線與直線互相垂直,則的最小值為        。

查看答案和解析>>

同步練習(xí)冊答案