19.從1,2,3,4,5五個(gè)數(shù)字中,任意抽取2個(gè)數(shù)字,則抽取的2個(gè)數(shù)字都是奇數(shù)的概率為(  )
A.$\frac{3}{20}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{3}{5}$

分析 從1,2,3,4,5五個(gè)數(shù)字中,任意抽取2個(gè)數(shù)字,方法數(shù)為10,抽取的2個(gè)數(shù)字都是奇數(shù),方法數(shù)是3,可得所求概率.

解答 解:從1,2,3,4,5五個(gè)數(shù)字中,任意抽取2個(gè)數(shù)字,方法數(shù)為10,
抽取的2個(gè)數(shù)字都是奇數(shù),方法數(shù)是3,
所以所求概率為$\frac{3}{10}$,
故選C.

點(diǎn)評(píng) 本題考查概率的計(jì)算,確定基本事件的個(gè)數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{lnx}{a^2}-x$.
(I)若曲線f(x)在(1,f(1))處的切線與x軸平行,求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)f(x)的最大值大于1-$\frac{2}{a^2}$時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比為q,前n項(xiàng)和為Sn,若對(duì)?x∈N+,有$\frac{{S}_{2n}}{{S}_{n}}$<5,則q的取值范圍是(  )
A.(0,1]B.(1,2)C.[1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,|F1F2|=2$\sqrt{3}$,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓左邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.中心在原點(diǎn),準(zhǔn)線方程為y=±4,離心率為$\frac{1}{2}$的橢圓的標(biāo)準(zhǔn)方程是$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=-(x-1)2-blnx,其中b為常數(shù).
(1)當(dāng)b>$\frac{1}{2}$時(shí),判斷函數(shù)f(x)在定義域上的單調(diào)性;
(2)若函數(shù)f(x)的有極值點(diǎn),求b的取值范圍及f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+3x,x<1\\ f(x-3),x≥1\end{array}\right.$,則f(4)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=loga(5-ax)(a>0,a≠1)在[1,3]上是減函數(shù),則a的取值范圍是(  )
A.$[\frac{5}{3},+∞)$B.$(\frac{1}{5},1)$C.$(1,\frac{5}{3})$D.$(1,\frac{5}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b,c是△ABC三邊之長(zhǎng),若滿足等式a2+b2-c2=ab,則角C的大小為( 。
A.60°B.90°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案