【題目】在三棱錐A﹣BCD中,點A在BD上的射影為O,∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2 ,AC= .
(1)求證:AO⊥平面BCD;
(2)若E是AC的中點,求直線BE和平面BCD所成角的正切值.
【答案】
(1)證明:連接OC,由點A在BD上的射影為O,可得
AO⊥BD,
由∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2 ,可得
BD= =4,AO= = = ,
同理可得CO= ,由AO2+CO2=AC2,可得AO⊥CO,
又BD,CO平面BCD,且BD,CO為相交二直線,
可得AO⊥平面BCD;
(2)解:取CO的中點H,連接EH,
由中位線定理可得EH∥AO,EH= AO,
由AO⊥平面BCD,可得EH⊥平面BCD,
即有∠EBH為直線BE和平面BCD所成角.
又EH= ,BE= = = ,
BH= = = ,
可得tan∠EBH= = .
即有直線BE和平面BCD所成角的正切值為 .
【解析】(1)連接OC,由題意可得AO⊥BD,由勾股定理的逆定理可得AO⊥CO,運用線面垂直的判定定理,即可得證;(2)取CO的中點H,連接EH,運用中位線定理和線面垂直的性質(zhì)定理,可得EH⊥平面BCD,即有∠EBH為直線BE和平面BCD所成角.運用正切函數(shù)的定義,計算即可得到所求值.
【考點精析】關(guān)于本題考查的直線與平面垂直的判定和空間角的異面直線所成的角,需要了解一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)的圖象與函數(shù) 的圖象關(guān)于y軸對稱,則φ的值可以為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點O,焦點在x軸上的橢圓的一個頂點為B(0,1),B到焦點的距離為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P,Q是橢圓上異于點B的任意兩點,且BP⊥BQ,線段PQ的中垂線l與x軸的交點為(x0 , 0),求x0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域為R的偶函數(shù)y=f(x)滿足f(x+2)+f(x)=0,且當(dāng)x∈[0,2]時,f(x)=2﹣x2 , 則方程f(x)=2sinx在[﹣3π,3π]內(nèi)根的個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實數(shù)x,y滿足:x2+y2﹣2x﹣2y=0,則x+y的取值范圍是( )
A.[﹣4,0]
B.[2﹣2 ,2+2 ]
C.[0,4]
D.[﹣2﹣2 ,﹣2+2 ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),則a+2b的取值范圍為( )
A.
B.
C.(6,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過M上任意一點P作圓C的兩條切線PA,PB,切點分別為A、B,則∠APB的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲拋擲均勻硬幣2017次,乙拋擲均勻硬幣2016次,下列四個隨機(jī)事件的概率是0.5的是( )
①甲拋出正面次數(shù)比乙拋出正面次數(shù)多;
②甲拋出反面次數(shù)比乙拋出正面次數(shù)少;
③甲拋出反面次數(shù)比甲拋出正面次數(shù)多;
④乙拋出正面次數(shù)與乙拋出反面次數(shù)一樣多.
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項公式;
(2)證明: + +…+ < .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com