精英家教網 > 高中數學 > 題目詳情
10.已知集合A={x∈N|x≤1},B={x|-1≤x≤2},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

分析 集合A與集合B的公共元素構成集合A∩B.

解答 解:∵集合A={x∈N|x≤1},B={x|-1≤x≤2},∴A∩B={0,1}.
故選A.

點評 本題考查集合的交集及其運算,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.已知函數$f(x)=\left\{{\begin{array}{l}{{2^x}-a(x<1)}\\{4(x-a)(x-2a)(x≥1)}\end{array}}\right.$.若f(x)=0恰有2個實數根,則實數a的取值范圍是$[\frac{1}{2},1)∪[2,+∞)$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.不等式$\frac{1}{x-1}$<1的解集記為p,關于x的不等式x2+(a-1)x-a>0的解集記為q,若p是q的充分不必要條件,則實數a的取值范圍是( 。
A.(-2,-1]B.[-2,-1]C.(-∞,-2]∪[-1,+∞)D.(-∞,-2)∪(-1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知α是三角形的內角,且sinα+cosα=-$\frac{1}{5}$,則tanα的值為(  )
A.$-\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{3}{4}$D.$-\frac{3}{4}$或$-\frac{4}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖所示,游樂場中的摩天輪勻速逆時針旋轉,每轉一圈需要6min,其中心O距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點P的起始位置在最低點處,在時刻t(min)時點P距離地面的高度為f(t)=Asin(ωt+φ)+h(A>0,ω>0,-π<φ<0,t≥0).
(Ⅰ)求f(t)的單調減區(qū)間;
(Ⅱ)求證:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.在平行四邊形ABCD中,AC與BD交于點O,E是線段OD的中點,AE的延長線與CD相交于點F,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{BD}$B.$\frac{1}{2}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{BD}$C.$\frac{1}{2}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{BD}$D.$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,在六面體ABCD-A1B1C1D1中,M,N分別是棱A1B1,B1C1的中點,平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1
(1)證明:BB1⊥平面ABCD;
(2)已知六面體ABCD-A1B1C1D1的棱長均為$\sqrt{5}$,cos∠BAD=$\frac{3}{5}$,設平面BMN與平面AB1D1相交所成二面角的大小為θ求cosθ.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知拋物線y2=2px(p>0)上一點M(1,y)到焦點F的距離為$\frac{17}{16}$.
(1)求p的值;
(2)若圓(x-a)2+y2=1與拋物線C有四個不同的公共點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.定義:如果函數y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=$\frac{f(b)-f(a)}{b-a}$,則稱函數y=f(x)是[a,b]上的“平均值函數”,x0是它的一個均值點,例如y=|x|是[-2,2]上的平均值函數,0就是它的均值點,若函數f(x)=x2-mx-1是[-1,1]上的“平均值函數”,則實數m的取值范圍是( 。
A.[-1,1]B.(0,2)C.[-2,2]D.(0,1)

查看答案和解析>>

同步練習冊答案