已知函數(shù)
(1)當(dāng)m=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)m>0時(shí),函數(shù)f(x)的圖象與x軸有交點(diǎn),求m的取值范圍.
【答案】分析:(1)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,只需令導(dǎo)數(shù)大于0,解得x的范圍為函數(shù)的增區(qū)間,令導(dǎo)數(shù)小于0,解得x的范圍為函數(shù)的減區(qū)間.
(2)要想使函數(shù)f(x)的圖象與x軸有交點(diǎn),只需函數(shù)的最小值小于0即可.利用導(dǎo)數(shù)求函數(shù)的最小值,先令導(dǎo)數(shù)等于0,得到極值點(diǎn),再判斷極值點(diǎn)兩側(cè)導(dǎo)數(shù)的正負(fù),判斷是極大值還是極小值,再比較極小值與端點(diǎn)函數(shù)值大小即可.本題中只有一個(gè)極小值,所以極小值也是最小值,再讓最小值小于0即可.
解答:解:(1)f'(x)=x3-1,由f'(x)>0得x>1,由f'(x)<0得x<1.
故f(x)的單增區(qū)間為[1,+∞),單減區(qū)間為(-∞,1].
(2)f'(x)=x3-m3∵m>0.由f'(x)>0得x>m,由f'(x)<0得x<m.
∴f(x)在(-∞,m)上單減,在(m,+∞)上單增,故x=m時(shí),f(x)min=f(m)=,
要f(x)圖象與x軸有交點(diǎn),則,解得m≥1.
故m∈[1,+∞).
點(diǎn)評(píng):本題主要考查了應(yīng)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與最值的方法,屬于導(dǎo)數(shù)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013年江蘇省高考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)m=0時(shí),求函數(shù)f(x)在區(qū)間上的取值范圍;
(2)當(dāng)tanα=2時(shí),,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年江蘇省高考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)m=0時(shí),求函數(shù)f(x)在區(qū)間上的取值范圍;
(2)當(dāng)tanα=2時(shí),,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)m=2時(shí),求曲線y=f(x)在點(diǎn)(0,0)處的切線方程;
(2)討論函數(shù)y=f(x)的單調(diào)性;
(3)若函數(shù)f(x)既有極大值,又有極小值,且當(dāng)0≤x≤4m時(shí),數(shù)學(xué)公式恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)m=-1時(shí),求函數(shù)f(x)的最大值;
(2)當(dāng)m=1時(shí),設(shè)點(diǎn)A、B是函數(shù)y=f(x)(x∈[0,1])的圖象上任意不同的兩點(diǎn),求證:直線AB的斜率kAB<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年陜西省寶雞中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)m=2時(shí),求曲線y=f(x)在點(diǎn)(0,0)處的切線方程;
(2)討論函數(shù)y=f(x)的單調(diào)性;
(3)若函數(shù)f(x)既有極大值,又有極小值,且當(dāng)0≤x≤4m時(shí),恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案