【題目】某景區(qū)擬將一半徑為的半圓形綠地改建為等腰梯形(如圖,其中為圓心,點在半圓上)的放養(yǎng)觀賞魚的魚池,周圍四邊建成觀魚長廊(寬度忽略不計).,魚池面積為(單位:).

1)求S關于的函數(shù)表達式,并求魚池面積何時最大;

2)已知魚池造價為每平方米2000元,長廊造價為每米3000元,問此次改建的最高造價不超過多少?(取計算)

【答案】1時,227000000

【解析】

1)結合三角函數(shù)的基本概念,表示出等腰梯形的上底下底和高,結合和面積公式和導數(shù)即可求解

2)作,求出,則 ,表示等腰梯形周長為

,進而表示出總造價公式,利用導數(shù)研究函數(shù)增減性,進而求解

如圖,,,則等腰梯形面積為

,代入數(shù)據可得:,

,當時,,,時,,,故當時,函數(shù)取到最大值,

2)作,得,,等腰梯形周長為:

,結合(1)中面積,可得總造價

化簡得:

由(1)知時單調遞增,時單調遞減,令

,令,,當時,時,,故得出上增減性相同,所以單增,時單減,在時取到最大值:

故總造價不超過27000000

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】鳳鳴山中學的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關關系,根據一組樣本數(shù)據),用最小二乘法近似得到回歸直線方程為,則下列結論中不正確的是(

A.具有正線性相關關系

B.回歸直線過樣本的中心點

C.若該中學某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線:,(t為參數(shù)),曲線:,(為參數(shù)).

1)以原點為極點,x軸正半軸為極軸建立極坐標系;當,的交點的極坐標(其中極徑,極角);

2)過坐標原點O的垂線,垂足為A,POA中點,變化時,P點軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天氣預報說,在今后的三天中,每一天下雨的概率為,用隨機模擬的方法估計這三天中恰有兩天下雨的概率.可利用計算機產生09之間的整數(shù)值的隨機數(shù),如果我們用1,23,4表示下雨,用5,6,78,9,0表示不下雨,順次產生的隨機數(shù)如下:

90 79 66 19 19 25 27 19 32 81 24 58 56 96 83

43 12 57 39 30 27 55 64 88 73 01 13 13 79 89

,這三天中恰有兩天下雨的概率約為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線相交于,兩點,為拋物線的焦點,若,則的中點的橫坐標為( )

A. B. 3C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著科學技術的飛速發(fā)展,網絡也已經逐漸融入了人們的日常生活,網購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優(yōu)勢而深受廣大消費者認可.某網購公司統(tǒng)計了近五年在本公司網購的人數(shù),得到如下的相關數(shù)據(其中x=1”表示2015年,x=2”表示2016年,依次類推;y表示人數(shù))

x

1

2

3

4

5

y(萬人)

20

50

100

150

180

1)試根據表中的數(shù)據,求出y關于x的線性回歸方程,并預測到哪一年該公司的網購人數(shù)能超過300萬人;

2)該公司為了吸引網購者,特別推出玩網絡游戲,送免費購物券活動,網購者可根據拋擲骰子的結果,操控微型遙控車在方格圖上行進. 若遙控車最終停在勝利大本營,則網購者可獲得免費購物券500元;若遙控車最終停在失敗大本營,則網購者可獲得免費購物券200. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標有第0格、第1格、第2格、、第20格。遙控車開始在第0格,網購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從)若擲出偶數(shù)遙控車向前移動兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第格的概率為,試證明是等比數(shù)列,并求網購者參與游戲一次獲得免費購物券金額的期望值.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年320日是國際幸福日,某電視臺隨機調查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機抽取18,用“10分制”記錄了他們的幸福度指數(shù),結果見如圖所示莖葉圖,其中以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉.若幸福度不低于8.5,則稱該人的幸福度為“很幸!保

()求從這18人中隨機選取3,至少有1人是“很幸!钡母怕剩

()以這18人的樣本數(shù)據來估計整個社區(qū)的總體數(shù)據,若從該社區(qū)(人數(shù)很多)任選3,表示抽到“很幸福”的人數(shù),的分布列及

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.

1)求的分布列及數(shù)學期望;

2)在概率(=0,12,3), 的值最大, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面. 

(1)證明:平面平面;

(2)若,為棱的中點,,求四面體的體積.

查看答案和解析>>

同步練習冊答案