10.在△ABC中,角A、B、C的對邊分別為a、b、c,若$\overrightarrow m=(b,c-a)$,$\overrightarrow n=(sinC+sinA,sinC-sinB)$,且$\overrightarrow m$∥$\overrightarrow n$.
(1)求角A;       
(2)若b+c=4,△ABC的面積為$\frac{{3\sqrt{3}}}{4}$,求邊a的長.

分析 (1)根據(jù)向量平行的坐標(biāo)公式建立方程關(guān)系,利用余弦定理即可求∠A的大。
(2)利用三角形面積公式可求bc=3,進(jìn)而利用余弦定理可求a的值.

解答 解:(1)∵$\overrightarrow m=(b,c-a)$,$\overrightarrow n=(sinC+sinA,sinC-sinB)$,且$\overrightarrow m$∥$\overrightarrow n$,
∴b(sinC-sinB)-(c-a)(sinC+sinA)=0,
∴b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∴∠A=$\frac{π}{3}$.
(2)∵${S_{△ABC}}=\frac{1}{2}bc•sin\frac{π}{3}=\frac{{3\sqrt{3}}}{4}$,
∴bc=3;
∴a2=b2+c2-2bc•cosA=${(b+c)^2}-2bc(1+cosA)=16-6(1+\frac{1}{2})=7$,
∴$a=\sqrt{7}$.

點評 本題主要考查了向量平行的坐標(biāo)公式,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,四面體P-ABC中,$∠APB=∠BPC=∠CPA=\frac{π}{2}$,PA=4,PB=2,$PC=\sqrt{5}$,則四面體P-ABC的外接球的表面積為25π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{{\sqrt{3}sinC}}{cosB}=\frac{c}$.
(Ⅰ)求角B的大。
(Ⅱ)點D為邊AB上的一點,記∠BDC=θ,若$\frac{π}{2}$<θ<π,CD=2,$AD=\sqrt{5}$,a=$\frac{8\sqrt{5}}{5}$,求sinθ與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.中石化集團(tuán)通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團(tuán)在某些區(qū)塊隨機初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探.由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:
井號I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預(yù)報值;
(2)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow$=(k,0,1),$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,則k=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知P、Q分別在射線y=x(x>0)和y=-x(x>0)上,且△POQ的面積為1,(0為原點),則線段PQ中點M的軌跡為(  )
A.雙曲線x2-y2=1B.雙曲線x2-y2=1的右支
C.半圓x2+y2=1(x<0)D.一段圓弧x2+y2=1(x>$\frac{{\sqrt{2}}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求經(jīng)過點P(-3,0),Q(0,-2)的橢圓的標(biāo)準(zhǔn)方程,并求出橢圓的長軸長、短軸長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過拋物線$y=\frac{1}{4}{x^2}$的焦點B,離心率為$\frac{{2\sqrt{2}}}{3}$,直線l交橢圓于P,Q(異于點B)兩點,且BP⊥BQ.
(1)求橢圓C的方程;
(2)求△BPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.畫出底面邊長為4cm,高為3cm的正四棱錐的直觀圖.(不寫作法)

查看答案和解析>>

同步練習(xí)冊答案