已知函數(shù)y=
2x2-ax+1
x2+4x+6
的最小值為1,求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:把函數(shù)最小值問題轉(zhuǎn)化為x2-(a+4)x-5≥0,x∈R恒成立,利用△=(a+4)2-4×(-5)≤0,求解即可.
解答: 解:∵函數(shù)y=
2x2-ax+1
x2+4x+6
的定義域?yàn)镽,最小值為1,
2x2-ax+1
x2+4x+6
≥1,
∴x2-(a+4)x-5≥0,x∈R恒成立,
∴△=(a+4)2-4×(-5)≤0,
即△=(a+4)2+20≤0,
無解,
∴實(shí)數(shù)a的取值范圍為∅.
點(diǎn)評:本題考查了函數(shù)的最值,轉(zhuǎn)化為不等式求解,結(jié)合二次函數(shù)求解,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對于任意的x1,x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究函數(shù)f(x)=x3+sinx+1的某一個對稱中心,并利用對稱中心的上述定義,可得到f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)=( 。
A、0B、2014
C、4028D、4031

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一四棱錐被平行于底面的平面所截,若截面面積與底面面積之比為1:4,則此截面把一條側(cè)棱分成的兩段之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a2=4,S5=30.
(Ⅰ)求an的表達(dá)式;
(Ⅱ)設(shè)An為數(shù)列{
an-1
an
}的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式An
2n+1
<a對一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由;
(Ⅲ)將數(shù)列{an}依次按1項(xiàng),2項(xiàng),3項(xiàng),1項(xiàng),2項(xiàng),3項(xiàng)循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7),(a8,a9),(a10,a11,a12),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M=
10
02
,N=
1
2
0
02
,設(shè)曲線y=sinx在矩陣MN對應(yīng)的變換作用下得到曲線F,求F的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1b1+a2b2>0,且a1,a2,b1,b2都是實(shí)數(shù),求證:a1b1+a2b2
a
2
1
+
a
2
2
b
2
1
+
b
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在 Rt△AOB中,∠OAB=
π
6
,斜邊AB=4. Rt△AOC可以通過 Rt△AOB以直線AO為軸旋轉(zhuǎn)θ得到,動點(diǎn)D在斜邊AB上.
(1)若θ=90°,求證:平面COD⊥平面AOB;
(2)若θ=120°,求CD與平面AOB所成角最大時該角的正弦值;
(3)在(2)的條件下,求二面角B-CO-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=4,d=-
5
7
,當(dāng)Sn取得最大值,n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(0,3),
b
=(-4,4),則向量
a
b
的夾角為
 

查看答案和解析>>

同步練習(xí)冊答案