6.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,則z=2x-y的最大值為1.

分析 首先畫出可行域,利用目標(biāo)函數(shù)變形為y=2x-z在y的截距最小得到z的最大值.

解答 解:x,y滿足的平面區(qū)域如圖:則z=2x-y變形為y=2x-z,當(dāng)此直線經(jīng)過圖中A(0,-1)時(shí),在y軸的截距最小,z最大,所以z的最大值為2×0-(-1)=1;
故答案為:1.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問題;正確畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,BC 為⊙O 的直徑,$\widehat{AB}=\widehat{AD}$,以點(diǎn) A 為切點(diǎn)的切線與 CD 的延長(zhǎng)線交于點(diǎn)E 
(1)∠AED 是否等于90°?為什么?
(2)若 AD=2$\sqrt{5}$,ED:EA=1:2,求⊙O的半徑;
(3)在(2)的條件下,求∠CAD  的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x2-2x>0},$B=\{x|\frac{x-2}{2x}≤1\}$,則A∩B=( 。
A.[-2,0)B.(-2,0)∪(2,+∞)C.(-∞,-2]∪(2,+∞)D.[-1,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)二次函數(shù)f(x)=x2+ax+b(a、b∈R).
(1)當(dāng)b=1時(shí),求函數(shù)f(x)在[-1,1]上的值域;
(2)若方程f(x)=0有兩個(gè)非整數(shù)實(shí)根,且這兩實(shí)數(shù)根在相鄰兩整數(shù)之間,試證明存在整數(shù)k,使得$|{f(k)}|≤\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}^x,x>1\end{array}$則滿足f(x)≤2的x取值范圍是( 。
A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過(2,2)點(diǎn)與雙曲線x2$-\frac{y^2}{4}=1$有共同漸近線的雙曲線方程為( 。
A.x2$-\frac{y^2}{4}=-1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{x^2}{3}-\frac{y^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.定圓M:(x+$\sqrt{3}$)2+y2=16,動(dòng)圓N過點(diǎn)F($\sqrt{3}$,0)且與圓M相切,記圓心N的軌跡為E.
(1)求軌跡E的方程;
(2)設(shè)直線x=ny+1與E交于P,Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P1(P1與Q不重合),則直線P1Q與x軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.雙曲線C與橢圓C1:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{11}$=1有相等焦距,與雙曲線C2:$\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{32}$=1有相同漸近線,則雙曲線C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{\frac{45}{4}}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.世界人口在過去40年翻了一番,則每年人口平均增長(zhǎng)率約是1.7%(參考數(shù)據(jù):lg2≈0.301,100.0075≈1.017).

查看答案和解析>>

同步練習(xí)冊(cè)答案