已知兩點(diǎn)M和N分別在直線(xiàn)y=mx和y=-mx(m>0)上運(yùn)動(dòng),且|MN|=2,動(dòng)點(diǎn)p滿(mǎn)足:2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,并討論曲線(xiàn)C的類(lèi)型;
(Ⅱ)過(guò)點(diǎn)(0,1)作直線(xiàn)l與曲線(xiàn)C交于不同的兩點(diǎn)A、B,若對(duì)于任意m>1,都有∠AOB為銳角,求直線(xiàn)l的斜率k的取值范圍.
分析:(I)根據(jù)題意可判斷出P是MN的中點(diǎn).設(shè)出P,M,N的坐標(biāo),根據(jù)題意聯(lián)立方程求得
x2
1
m2
 +
y2
m2
=1
,然后對(duì)m>1,o<m<1和m=1對(duì)方程表示出曲線(xiàn)進(jìn)行分類(lèi)討論.
(II)設(shè)出直線(xiàn)l的方程,與橢圓的方程聯(lián)立消去y,利用韋達(dá)定理表示出x1+x2和x1x2,利用直線(xiàn)方程表示出y1y2,要使∠AOB為銳角,需
OA
OB
>0
,利用向量的基本運(yùn)算整理得m2+
1
m2
> K2 +1
,利用基本不等式求得m2+
1
m2
>2
進(jìn)而求得k的范圍.
解答:解:(I)由2
op
=
OM
+
ON
,得P是MN的中點(diǎn).
設(shè)P(x,y),M(x1,mx1),N(x2,-mx2)依題意得:
x1+x2 =2x
mx1-mx2=2y
 (x1-x2)2+(mx1+mx2)2=4

消去x1,x2,整理得
x2
1
m2
+
y2
m2
=1

當(dāng)m>1時(shí),方程表示焦點(diǎn)在y軸上的橢圓;
當(dāng)o<m<1時(shí),方程表示焦點(diǎn)在x軸上的橢圓;
當(dāng)m=1時(shí),方程表示圓.
(II)由m>1,焦點(diǎn)在y軸上的橢圓,直線(xiàn)l與曲線(xiàn)c恒有兩交點(diǎn),
因?yàn)橹本(xiàn)斜率不存在時(shí)不符合題意,
可設(shè)直線(xiàn)l的方程為y=kx+1,直線(xiàn)與橢圓的交點(diǎn)為A(x1,y1),B(x2,y2).
y=kx+1
x2
1
m2
+
y2
m2
=1
?(m4+k2)x2+2kx+1-m2=0
x1+x2 =-
2k
m4+k2
,x1x2=-
1-m2
m4+k2

y1 y2=(kx1+1)(kx2+1)=
k2(1-m2)
m4+k2
+
2k2
m4+k2
+1

要使∠AOB為銳角,則有
OA
OB
>0

∴x1x2+y1y2=
m4-(k2+1)m2+1 
m4+k2
>0

即m4-(k2+1)m2+1>0,
可得m2+
1
m2
> K2 +1
,對(duì)于任意m>1恒成立.
m2+
1
m2
>2
,∴K2+1≤2,-1≤k≤1
所以滿(mǎn)足條件的k的取值范圍是[-1.1].
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.考查了學(xué)生知識(shí)的綜合運(yùn)用和分析問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:邢臺(tái)一模 題型:解答題

已知兩點(diǎn)M和N分別在直線(xiàn)y=mx和y=-mx(m>0)上運(yùn)動(dòng),且|MN|=2,動(dòng)點(diǎn)p滿(mǎn)足:2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,并討論曲線(xiàn)C的類(lèi)型;
(Ⅱ)過(guò)點(diǎn)(0,1)作直線(xiàn)l與曲線(xiàn)C交于不同的兩點(diǎn)A、B,若對(duì)于任意m>1,都有∠AOB為銳角,求直線(xiàn)l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市虹口區(qū)北郊高級(jí)中學(xué)數(shù)學(xué)押題試卷(文理合卷)(解析版) 題型:解答題

已知兩點(diǎn)M和N分別在直線(xiàn)y=mx和y=-mx(m>0)上運(yùn)動(dòng),且|MN|=2,動(dòng)點(diǎn)p滿(mǎn)足:(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,并討論曲線(xiàn)C的類(lèi)型;
(Ⅱ)過(guò)點(diǎn)(0,1)作直線(xiàn)l與曲線(xiàn)C交于不同的兩點(diǎn)A、B,若對(duì)于任意m>1,都有∠AOB為銳角,求直線(xiàn)l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年河北省邢臺(tái)市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知兩點(diǎn)M和N分別在直線(xiàn)y=mx和y=-mx(m>0)上運(yùn)動(dòng),且|MN|=2,動(dòng)點(diǎn)p滿(mǎn)足:(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,并討論曲線(xiàn)C的類(lèi)型;
(Ⅱ)過(guò)點(diǎn)(0,1)作直線(xiàn)l與曲線(xiàn)C交于不同的兩點(diǎn)A、B,若對(duì)于任意m>1,都有∠AOB為銳角,求直線(xiàn)l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年上海市徐匯區(qū)高三(下)4月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知兩點(diǎn)M和N分別在直線(xiàn)y=mx和y=-mx(m>0)上運(yùn)動(dòng),且|MN|=2,動(dòng)點(diǎn)p滿(mǎn)足:(O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,并討論曲線(xiàn)C的類(lèi)型;
(Ⅱ)過(guò)點(diǎn)(0,1)作直線(xiàn)l與曲線(xiàn)C交于不同的兩點(diǎn)A、B,若對(duì)于任意m>1,都有∠AOB為銳角,求直線(xiàn)l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案