已知數(shù)列{an}和{bn}中,數(shù)列{an}的前n項(xiàng)和記為Sn.若點(diǎn)(n,Sn)在函數(shù)y=-x2+4x
的圖象上,點(diǎn)(n,bn)在函數(shù)y=2x的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前-1<x<1項(xiàng)和f(x)=15.
【答案】分析:(1)先根據(jù)題設(shè)知Sn=-n2+4n,再利用an=Sn-Sn-1求得an,驗(yàn)證a1是符合,最后答案可得.
(2)由題設(shè)可知bn=2n,把a(bǔ)n一同代入anbn然后用錯(cuò)位相減法求和.
解答:解:(1)由已知得Sn=-n2+4n
∵當(dāng)n≥2時(shí),an=Sn-Sn-1=-2n+5
又當(dāng)n=1是,a1=S1=3,
∴an=-2n+5
(2)由已知得bn=2n,
∴anbn=(-2n+5)2n,
∴Tn=3×2+1×4+(-1)×8…+(-2n+5)2n,
2Tn=3×4+1×8+(-1)×16…+(-2n+5)2n+1,
兩式相減得Tn=-6+(23+24+…+2n-1)+(2n+5)n-1=(-2n+7)2n+1-14
點(diǎn)評:本題主要考查了數(shù)列的遞推式解決數(shù)列的通項(xiàng)公式和求和問題.