【題目】在三棱柱中,側面為矩形, , , 是的中點, 與交于點,且平面.
(1)證明:平面平面;
(2)若, 的重心為,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)通過證明, ,推出平面,然后證明平面平面.(2)以為坐標原點,分別以, , 所在直線為, , 軸建立如圖所示的空間直角坐標系.求出平面的法向量,設直線與平面所成角,利用空間向量的數(shù)量積求解直線與平面所成角的正弦值即可.
試題解析:(1)∵為矩形, , , 是的中點,
∴, , , ,
從而, ,
∵, ,∴,
∴,
∴,從而,
∵平面, 平面,
∴,
∵,∴平面,
∵平面,
∴平面平面.
(2)如圖,以為坐標原點,分別以, , 所在直線為, , 軸建立如圖所示的空間直角坐標系.
在矩形中,由于,所以和相似,
從而,
又, ,
∴, , , ,
∴, , , , ,
∵為的重心,∴, ,
設平面的法向量為,
, ,
由可得整理得
令,則, ,∴,
設直線與平面所成角,則
,
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知D,E,F分別為△ABC的邊BC,CA,AB的中點,記 =a , =b.則下列命題中正確的個數(shù)是( )
① = a-b;② =a+ b;③ = a+ b;④ 0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+3x+a
(1)當a=﹣2時,求不等式f(x)>2的解集
(2)若對任意的x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga (a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求f(0)的值和實數(shù)m的值;
(2)當m=1時,判斷函數(shù)f(x)在(﹣1,1)上的單調性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個圖形,其中能表示從集合M到集合N的函數(shù)關系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點E在線段AB上,過點E作交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB;
(2)試問:當點E在何處時,四棱錐P﹣EFCB的側面的面積最大?并求此時四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com