【題目】關于直線a,b及平面α,β,下列命題中正確的是(
A.若a∥α,α∩β=b,則a∥b
B.若a∥α,b∥α,則a∥b
C.若a⊥α,a∥β,則α⊥β
D.若a∥α,b⊥a,則b⊥α

【答案】C
【解析】解:A是錯誤的,∵a不一定在平面β內, ∴a,b有可能是異面直線;
B是錯誤的,∵平行于同一個平面的兩條直線的位置關系不確定,
∴a,b也有可能相交或異面;
C是正確的,由直線與平面垂直的判斷定理能得到C正確;
D是錯誤的,直線與平面垂直,需直線與平面中的兩條相交直線垂直.
故選:C.
【考點精析】解答此題的關鍵在于理解空間中直線與平面之間的位置關系的相關知識,掌握直線在平面內—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)是定義在(﹣∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有3f(x)+xf′(x)>0,則
不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集(
A.(﹣2018,﹣2015)
B.(﹣∞,﹣2016)
C.(﹣2016,﹣2015)
D.(﹣∞,﹣2012)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,集合A={x|x2﹣2x﹣3<0},B={x|0<x≤4}.
(1)求A∩B,A∪B;
(2)求(UA)∩(UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,可以是奇函數(shù)的為(
A.f(x)=(x﹣a)|x|,a∈R
B.f(x)=x2+ax+1,a∈R
C.f(x)=log2(ax﹣1),a∈R
D.f(x)=ax+cosx,a∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,則實數(shù)m=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“|x+1|+|x﹣2|≤5”是“﹣2≤x≤3”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調遞增的函數(shù)是(
A.y=|x|+1
B.y=x3
C.y=﹣x2+1
D.y=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若全集U=R,集合A={x|x2﹣x﹣2>0},則UA=(
A.(﹣1,2)
B.(﹣2,1)
C.[﹣1,2]
D.[﹣2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=3|x1|的單調遞增區(qū)間

查看答案和解析>>

同步練習冊答案