設(shè)函數(shù)f(x)=-
1
3
x3+x2+(a2-1)x
,其中a>0.
(1)若函數(shù)y=f(x)在x=-1處取得極值,求a的值;
(2)已知函數(shù)f(x)有3個(gè)不同的零點(diǎn),分別為0、x1、x2,且x1<x2,若對(duì)任意的x∈[x1,x2],f(x)>f(1)恒成立,求a的取值范圍.
(1)求導(dǎo)函數(shù),可得f′(x)=-x2+2x+(a2-1)
∵函數(shù)y=f(x)在x=-1處取得極值,
∴f′(-1)=0
∴-1-2+(a2-1)=0
∴a=±2
經(jīng)檢驗(yàn),a=2符合題意;
(2)由題意,f(x)=-
1
3
x3+x2+(a2-1)x
=x(-
1
3
x2+x+a2-1
)=-
1
3
x(x-x1)(x-x2)

∵函數(shù)f(x)有3個(gè)不同的零點(diǎn),分別為0、x1、x2,
-
1
3
x2+x+a2-1
=0有兩個(gè)相異的實(shí)根x1、x2,
∴△=1+
4
3
(a2-1)
>0,∴a<-
1
2
(舍去),或a>
1
2

且x1+x2=3
∵x1<x2,∴2x2>x1+x2=3,∴x2
3
2
>1
①若x1≤1<x2,則f(1)=-
1
3
(1-x1)(1-x2)
≥0,而f(x1)=0,不符合題意;
②若1<x1<x2,則對(duì)任意的x∈[x1,x2],有x-x1≥0,x-x2≤0,
f(x)=-
1
3
x(x-x1)(x-x2)
≥0
又f(x1)=0,∴f(x)在[x1,x2]上的最小值為0
∴對(duì)任意的x∈[x1,x2],f(x)>f(1)恒成立,等價(jià)于f(1)=a2-
1
3
<0
-
3
3
<a<
3
3

綜上可得a的取值范圍為(
1
2
,
3
3
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
-1,x>0
1,x<0
,則
(a+b)-(a-b)f(a-b)
2
(a≠b)的值是( 。
A、aB、b
C、a,b中較小的數(shù)D、a,b中較大的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-x
1+x
的反函數(shù)為h(x),又函數(shù)g(x)與h(x+1)的圖象關(guān)于有線y=x對(duì)稱,則g(2)的值為( 。
A、-
4
3
B、-
1
3
C、-1
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
 
1-x2
,(|x|≤1)
|x|,(|x|>1)
,若方程f(x)=a有且只有一個(gè)實(shí)根,則實(shí)數(shù)a滿足(  )
A、a<0B、0≤a<1
C、a=1D、a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1+x2
1-x2

①求它的定義域;
②求證:f(
1
x
)=-f(x)
;
③判斷它在(1,+∞)單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮北一模)設(shè)函數(shù)f(x)=
1+x1-x
e-ax

(1)寫出定義域及f′(x)的解析式,
(2)設(shè)a>O,討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案