(2013•青浦區(qū)一模)若
.
135
a2b2c2
246
.
=a2A2+b2B2+c2C2,則C2化簡后的最后結(jié)果等于
2
2
分析:按照行列式的運算法則,將三階行列式轉(zhuǎn)化為實數(shù)的乘法與減法運算即可得出答案.
解答:解:根據(jù)行列式的運算法則,得
.
135
a2b2c2
246
.
=6b2+6c2+20a2-10b2-4c2-18a2=2a2-4b2+2c2
由題意得2a2-4b2+2c2=a2A2+b2B2+c2C2
∴C2=2.
故答案為:2.
點評:解答本題的關(guān)鍵就是弄清楚題中給出的運算法則,將三階矩陣計算問題轉(zhuǎn)化為一般運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)如果執(zhí)行如圖的框圖,輸入N=5,則輸出的數(shù)等于
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)已
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),滿足
m
n
=0

(1)將y表示為x的函數(shù)f(x),并求f(x)的最小正周期;
(2)已知a,b,c分別為△ABC的三個內(nèi)角A,B,C對應(yīng)的邊長,若f(x)≤f(
A
2
)
對所有的x∈R恒成立,且a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)已知集合A={x|x≤2},B={x|x≥a},且A∪B=R,則實數(shù)a的取值范圍是
a≤2
a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)(文)已知正三棱柱的底面正三角形邊長為2,側(cè)棱長為3,則它的體積V=
3
3
3
3

查看答案和解析>>

同步練習(xí)冊答案