【題目】已知定義在上的函數(shù)滿足:函數(shù)的圖象關(guān)于直線對稱,且當(dāng)時是函數(shù)的導(dǎo)函數(shù))成立.若,則的大小關(guān)系是
A. B. C. D.
【答案】C
【解析】函數(shù)的圖象關(guān)于直線對稱,向左平移一個單位后得到函數(shù)的圖象, 關(guān)于軸對稱, 為偶函數(shù), 函數(shù)為奇函數(shù), , 當(dāng)時, , 函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)上單調(diào)遞減, , ,
,即,故選A.
【方法點睛】本題主要考察抽象函數(shù)的單調(diào)性以及函數(shù)的求導(dǎo)法則,屬于難題.求解這類問題一定要耐心讀題、讀懂題,通過對問題的條件和結(jié)論進(jìn)行類比、聯(lián)想、抽象、概括,準(zhǔn)確構(gòu)造出符合題意的函數(shù)是解題的關(guān)鍵;解這類不等式的關(guān)鍵點也是難點就是構(gòu)造合適的函數(shù),構(gòu)造函數(shù)時往往從兩方面著手:①根據(jù)導(dǎo)函數(shù)的“形狀”變換不等式“形狀”;②若是選擇題,可根據(jù)選項的共性歸納構(gòu)造恰當(dāng)?shù)暮瘮?shù).本題通過觀察四個選項,聯(lián)想到函數(shù),再結(jié)合條件判斷出其單調(diào)性,進(jìn)而得出正確結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機(jī)抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:),其頻率分布直方圖如下:
(1)估計舊養(yǎng)殖法的箱產(chǎn)量低于50的概率并估計新養(yǎng)殖法的箱產(chǎn)量的平均值;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量 | 箱產(chǎn)量 | 合計 | |
舊養(yǎng)殖法 | |||
新養(yǎng)殖法 | |||
合計 |
附:,其中
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個命題,p:關(guān)于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函數(shù)y=lg(ax2﹣x+a)的定義域為R.如果p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為萬元,當(dāng)年產(chǎn)量不足80千件時, (萬元);當(dāng)年產(chǎn)量不少于80千件時, (萬元).通過市場分析,若每件售價為500元時,該廠年內(nèi)生產(chǎn)的商品能全部銷售完.
(1)寫出年利潤 (萬元)關(guān)于年產(chǎn)量 (千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級的A,B,C三個班共有學(xué)生120人,為調(diào)查他們的體育鍛煉情況,用分層抽樣的方法從這三個班中分別抽取4,5,6名學(xué)生進(jìn)行調(diào)查. (Ⅰ)求A,B,C三個班各有學(xué)生多少人;
(Ⅱ)記從C班抽取學(xué)生的編號依次為C1 , C2 , C3 , C4 , C5 , C6 , 現(xiàn)從這6名學(xué)生中隨機(jī)抽取2名做進(jìn)一步的數(shù)據(jù)分析.
(i)列出所有可能抽取的結(jié)果;
(ii)設(shè)A為事件“編號為C1和C2的2名學(xué)生中恰有一人被抽到”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公比為正數(shù)的等比數(shù)列{an}中, , ,數(shù)列{bn}(bn>0)的前n項和為Sn滿足 (n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項公式;
( II)求數(shù)列{anbn}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系xoy中,曲線,直線過點與曲線交于二點, 為中點.以坐標(biāo)原點O為極點,x軸正半軸為極軸,以平面直角坐標(biāo)系xoy的單位1為基本單位建立極坐標(biāo)系.
(1)求直線的極坐標(biāo)方程;
(2) 為曲線上的動點,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,| |=| |=| |=1, ,A(1,1),則 的取值范圍( )
A.[﹣1﹣ , ﹣1]
B.[﹣ ﹣ ,﹣ + ]?
C.[ ﹣ , + ]
D.[1﹣ ,1+ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠的打印機(jī)每5年需淘汰一批舊打印機(jī)并購買新機(jī),買新機(jī)時,同時購買墨盒,每臺新機(jī)隨機(jī)購買第一盒墨150元,優(yōu)惠0元;再每多買一盒墨都要在原優(yōu)惠基礎(chǔ)上多優(yōu)惠一元,即第一盒墨沒有優(yōu)惠,第二盒墨優(yōu)惠一元,第三盒墨優(yōu)惠2元,……,依此類推,每臺新機(jī)最多可隨新機(jī)購買25盒墨.平時購買墨盒按零售每盒200元.
公司根據(jù)以往的記錄,十臺打印機(jī)正常工作五年消耗墨盒數(shù)如下表:
消耗墨盒數(shù) | 22 | 23 | 24 | 25 |
打印機(jī)臺數(shù) | 1 | 4 | 4 | 1 |
以這十臺打印機(jī)消耗墨盒數(shù)的頻率代替一臺打印機(jī)消耗墨盒數(shù)發(fā)生的概率,記ξ表示兩臺打印機(jī)5年消耗的墨盒數(shù).
(1)求ξ的分布列;
(2)若在購買兩臺新機(jī)時,每臺機(jī)隨機(jī)購買23盒墨,求這兩臺打印機(jī)正常使用五年在消耗墨盒上所需費(fèi)用的期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com