(本小題滿分12分)
如圖,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D為B1C1的中點。
(Ⅰ)證明:B1C⊥面A1BD;
(Ⅱ)求二面角B—AC—B1的大小。

方法一:
(Ⅰ)證明:在Rt△BB1D和Rt△B1C1C中,

BB1D∽△B1C1C,∠B1DB=∠B1CC1。
又 ∠CB1D+∠B1CC1=90°
故 ∠CB1D+∠B1DB=90°
故 B1C⊥BD.·····················3分
又 正三棱柱ABC—A1B1C1,D為B1C1的中點。
A1D⊥平面B1C,
A1DB1C
A1DB1D=D,
所以 B1C⊥面A1BD!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ6分
(Ⅱ)解:設(shè)E為AC的中點,連接BE.B1E。
在正三棱柱ABC—A1B1C1中,B1C=B1A,∴B1EAC,BEAC,
即 ∠BEB1為二面角B—AC—B1的平面角·································9分


所以 二面角的大小為······································12分
方法二:
(Ⅰ)證明:設(shè)BC的中點為O,如圖建立空間直角坐標(biāo)系O—xyz
依題意有


故 
又 
所以

又 BDBA1=B
所以 B1C⊥面A1BD,
(Ⅱ)依題意有

設(shè)⊥平面ACB1,⊥平面ABC。
求得

所以 二面角的大小為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,O為AE的中點,以AE為折痕,將△ADE向上折起,使D到P,且PC=PB
(1)求證:PO⊥面ABCE;
(2)求AC與面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐所有棱長均為2,則側(cè)棱和底面所成的角是 (     )
A. 30°B. 45°C. 60 °D. 90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在三棱錐P-ABC中,⊿PAB是等邊三角形,D,E分別為AB,PC的中點.
(1)在BC邊上是否存在一點F,使得PB∥平面DEF
(2)若∠PAC=∠PBC=90º,證明:AB⊥PC
(3)在(2)的條件下,若AB=2,AC=求三棱錐P-ABC的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(、(本題12分)

如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,BCADABADAD=2AB=2BC="2, " OAD中點.
(1)求證:PO⊥平面ABCD;
(2)求直線PB與平面PAD所成角的正弦值;
(3)線段AD上是否存在點Q,使得三棱錐的體積為?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本題滿分14分)
已知四邊形ABCD是正方形,P是平面ABCD外一點,且PA=PB=PC=PD=AB=2,是棱的中點.建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量方法解答以下問題:
(1)求證:
(2) 求證:;
(3)求直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知四棱錐PABCD的底面是菱形,∠BCD=60°,點EBC邊的中點,ACDE交于點O,PO⊥平面ABCD.
(Ⅰ)求證:PDBC;
(Ⅱ)若AB=6,PC=6,求二面角PADC的大小;
(Ⅲ)在(Ⅱ)的條件下,求異面直線PBDE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,已知中,平面,
分別為的中點.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖, ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點.

(1)求證:平面PCF⊥平面PDE;
(2)求證:AE∥平面BCF.

查看答案和解析>>

同步練習(xí)冊答案