拋物線與直線的兩個交點(diǎn)為、,點(diǎn)在拋物弧上從運(yùn)動,則使的面積最大的點(diǎn)的坐標(biāo)為    _____    

 

【答案】

(-1,3)

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M,N為拋物線C:y=x2上的兩個動點(diǎn),過M,N分別作拋物線C的切線l1,l2,與x軸分別交于A,B兩點(diǎn),且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求點(diǎn)P的軌跡方程
(2)當(dāng)A,B所在直線滿足什么條件時,P的軌跡為一條直線?(請千萬不要證明你的結(jié)論)
(3)在滿足(1)的條件下,求證:△MNP的面積為一個定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點(diǎn)為F1,F(xiàn)2,則這個橢圓上存在六個不同的點(diǎn)M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點(diǎn),且與這條拋物線交于A,B兩點(diǎn),則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點(diǎn)作它的一條漸近線的垂線,垂足為M,O為坐標(biāo)原點(diǎn),則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A(x1,y2),B(x2,y2)是拋物線C:x2=2py(p為正常數(shù))上的兩個動點(diǎn),直線AB與x軸交于點(diǎn)p,與y軸交于點(diǎn)Q,且y1y2=
p2
4

(Ⅰ)求證:直線AB過拋物線C的焦點(diǎn);
(Ⅱ)是否存在直線AB,使得
1
|PA|
+
1
|PB|
=
3
|PQ|
?若存在,求出直線AB的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)已知拋物線C:y2=2px(p>0),直線l交此拋物線于不同的兩個點(diǎn)A
x1,y1
、B
x2y2

(1)當(dāng)直線l過點(diǎn)M
p,0
時,證明y1•y2為定值;
(2)當(dāng)y1y2=-p時,直線l是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由;
(3)如果直線l過點(diǎn)M
p,0
,過點(diǎn)M再作一條與直線l垂直的直線l'交拋物線C于兩個不同點(diǎn)D、E.設(shè)線段AB的中點(diǎn)為P,線段DE的中點(diǎn)為Q,記線段PQ的中點(diǎn)為N.問是否存在一條直線和一個定點(diǎn),使得點(diǎn)N到它們的距離相等?若存在,求出這條直線和這個定點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)已知橢圓的兩個焦點(diǎn)F1(0,1)、F2(0,1)、直線y=4是它的一條準(zhǔn)線,A1、A2分別是橢圓的上、下兩個頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)以原點(diǎn)為頂點(diǎn),A1點(diǎn)的拋物線為C,若過點(diǎn)F1的直線l與C交于不同的兩點(diǎn)M、N,求線段MN的中點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案