關于直線m,n與平面α,β,γ有以下三個命題
(1)若m∥α,n∥β,α∥β,則m∥n;
(2)若α∩β=m,α⊥γ,β⊥γ,則m⊥γ;
(3)若m⊥α,n⊥β且α⊥β,則m⊥n,
其中真命題有( 。
分析:找出m,n的可能情況判斷(1)的正誤;
對于(2)通過直線與平面垂直的判定定理,判斷正誤即可.
對于(3)由m⊥α,n⊥β且α⊥β,可知m與n不平行,借助于直線平移先得到一個與m或n都平行的平面,則所得平面與α、β都相交,根據(jù)m與n所成角與二面角平面角互補的結論.
解答:解:對于(1),若m∥α,n∥β,α∥β,則m∥n;可能m,n是異面直線.所以(1)不正確.
對于(2),若α⊥β,α⊥γ,β∩γ=m,設α∩β=m,α∩γ=b,β∩γ=c則m⊥c且m⊥b,故m⊥α,故(2)正確
對于(3),由m⊥α,n⊥β且α⊥β,則m與n一定不平行,否則有α∥β,與已知α⊥β矛盾,通過平移使得m與n相交,
且設m與n確定的平面為γ,則γ與α和β的交線所成的角即為α與β所成的角,因為α⊥β,所以m與n所成的角為90°,故(3)正確.
故選B.
點評:本題考查的知識點是平面與平面垂直的判定及平面與平面垂直的性質,其中熟練掌握空間線面之間垂直及平等的判定、性質、定義是解答此類問題的基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、關于直線m,n與平面α,β,有以下四個命題:
①若m∥a,n∥β且a∥β,則m∥n;②若m⊥a,n⊥β且a⊥β,則m⊥n;
③若m⊥a,n∥β且a∥β,則m⊥n;④若m∥a,n⊥β且a⊥β,則m∥n.
其中真命題的序號是
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6、關于直線m,n與平面α,β,有以下四個命題:
①若m∥α,n∥β且α∥β,則m∥n;
②若m⊥α,n⊥β且α⊥β,則m⊥n;
③若m⊥α,n∥β且α∥β,則m⊥n;
④若m∥α,n⊥β且α⊥β,則m∥n;
其中真命題的序號是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于直線m、n與平面α、β,有以下四個命題:
①若m∥n,m?α,α∩β=n,則m∥n;
②若m⊥α,n∥β且α∥β,則m⊥n;
③若m⊥α,n∥β且α∥β,則m⊥n;
④若m⊥α,n⊥β且α⊥β,則m⊥n.
其中真命題有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于直線m,n與平面α,β,有以下四個命題:
(1)若m∥α,n∥β,且α∥β,則m∥n;
(2)若m⊥α,n⊥β,且α⊥β,則m⊥n;
(3)若m⊥α,n∥β,且α∥β,則m⊥n;
(4)若m∥α,n⊥β,且α⊥β,則m∥n,
其中真命題的序號是
(2)(3)
(2)(3)

查看答案和解析>>

同步練習冊答案