如圖,P是雙曲線(a>0,b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且.某同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=|NF1|=…=a。類似地:P是橢圓(a>b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是橢圓的焦點,M是∠F1PF2的平分線上一點,且,則|OM|的取值范圍是(    )。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知雙曲線C的方程為
y2
a2
-
x2
b2
=1(a>0,b>0),離心率e=
5
2
,頂點到漸近線的距離為
2
5
5

(Ⅰ)求雙曲線C的方程;
(Ⅱ)如圖,P是雙曲線C上一點,A,B兩點在雙曲線C的兩條漸近線上,且分別位于第一、二象限,若
AP
PB
,λ∈[
1
3
,2]
,求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)我們定義雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與直線y=±b的交點為“虛近點”,如圖點P是雙曲線C在第一象限的漸近點,直線y=b與雙曲線C的左、右分支分別交于點A、B,F(xiàn)1、F2分別是雙曲線C的左、右焦點,O為坐標原點.
(1)求證:PF1⊥PF2;
(2)求證:PF1平分∠APO;
(3)你能否在未證明(1)下,直接證明(2)?請寫下你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動點,F(xiàn)1、F2是雙曲線的左右焦點,M是∠F1PF2的平分線上一點,且F2M⊥MP.某同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=
1
2
|NF1|,…,|OM|=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,b2+c2=a2,xy≠0)
上的動點,F(xiàn)1、F2是橢圓的左右焦點,M是∠F1PF2的平分線上一點,且F2M⊥MP,則|OM|的取值范圍是
(0,c)
(0,c)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動點,F(xiàn)1、F2是雙曲線的焦點,M是∠F1PF2的平分線上的一點,且
F2M
MP
=0
.有一同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=
1
2
|NF1|=…=a
.類似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的動點,F(xiàn)1、F2是橢圓的焦點,M是∠F1PF2的平分線上的一點,且
F2M
MP
=0
.則|OM|的取值范圍是( 。

查看答案和解析>>

同步練習冊答案