若數(shù)列{an}中an=-n2+6n+7,則其前n項(xiàng)和Sn取最大值時(shí),n=( 。
分析:數(shù)列{an}中,由an=-n2+6n+7=-(n-3)2+16,知a6=7,a7=0,a8=-9,由此能求出前n項(xiàng)和Sn取最大值時(shí),n的值.
解答:解:數(shù)列{an}中,
an=-n2+6n+7=-(n-3)2+16,
∴由an≥0,得n-3≤4.
∴a6=7,a7=0,a8=-9,
∴前n項(xiàng)和Sn取最大值時(shí),n=6,或n=7.
故選D.
點(diǎn)評(píng):本題考查數(shù)列的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}對(duì)于任意的正整數(shù)n滿足:an>0且anan+1=n+1,則稱數(shù)列{an}為“積增數(shù)列”.已知“積增數(shù)列”{an}中,a1=1,數(shù)列{an2+an+12}的前n項(xiàng)和為Sn,則對(duì)于任意的正整數(shù)n,有( 。
A、Sn≤2n2+3B、Sn≥n2+4nC、Sn≤n2+4nD、Sn≥n2+3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

關(guān)于數(shù)列有下列四個(gè)判斷:
①若a,b,c,d成等比數(shù)列,則a+b,b+c,c+d也成等比數(shù)列;
②若數(shù)列{an}是等比數(shù)列,則Sn,S2n-Sn,S3n-S2n…也成等比數(shù)列;
③若數(shù)列{an}既是等差數(shù)列也是等比數(shù)列,則{an}為常數(shù)列;
④數(shù)列{an}的前n項(xiàng)的和為Sn,且數(shù)學(xué)公式,則{an}為等差或等比數(shù)列;
⑤數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會(huì)有am=an(m≠n).
其中正確命題的序號(hào)是________.(請(qǐng)將正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省麗水中學(xué)高三(下)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}對(duì)于任意的正整數(shù)n滿足:an>0且anan+1=n+1,則稱數(shù)列{an}為“積增數(shù)列”.已知“積增數(shù)列”{an}中,a1=1,數(shù)列{an2+an+12}的前n項(xiàng)和為Sn,則對(duì)于任意的正整數(shù)n,有( )
A.Sn≤2n2+3
B.Sn≥n2+4n
C.Sn≤n2+4n
D.Sn≥n2+3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年安徽省阜陽市太和縣第二職業(yè)高級(jí)中學(xué)高三質(zhì)量檢測(cè)數(shù)學(xué)試卷4(理科)(解析版) 題型:選擇題

若數(shù)列{an}對(duì)于任意的正整數(shù)n滿足:an>0且anan+1=n+1,則稱數(shù)列{an}為“積增數(shù)列”.已知“積增數(shù)列”{an}中,a1=1,數(shù)列{an2+an+12}的前n項(xiàng)和為Sn,則對(duì)于任意的正整數(shù)n,有( )
A.Sn≤2n2+3
B.Sn≥n2+4n
C.Sn≤n2+4n
D.Sn≥n2+3n

查看答案和解析>>

同步練習(xí)冊(cè)答案