16.若sinα=-$\frac{2}{3}$,且α為第四象限角,則tanα的值等于(  )
A.$\frac{2\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{2}$D.-$\frac{2\sqrt{5}}{5}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,進而可求tanα的值.

解答 解:∵sinα=-$\frac{2}{3}$,且α為第四象限角,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{\sqrt{5}}{3}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{2\sqrt{5}}{5}$.
故選:D.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.集合A={y|y=2x},B=|x|y=lg(2x-1)},則A∩B=( 。
A.{y|y≥0}B.{x|x$>\frac{1}{2}$}C.{x|0$<x<\frac{1}{2}$}D.{y|y>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖中程序的運行結(jié)果是( 。
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知cot(α+$\frac{π}{3}}$)=-3,則tan(2α-$\frac{π}{3}}$)=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知曲線y=ex+a與y=(x-1)2恰好存在兩條公切線,則實數(shù)a的取值范圍為( 。
A.(-∞,2ln2+3)B.(-∞,2ln2-3)C.(2ln2-3,+∞)D.(2ln2+3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.定義在(-2,2)上的函數(shù)f(x)既為減函數(shù),又為奇函數(shù),解關(guān)于a的不等式f(a+1)+f(2a-3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知sin(3π-α)=2sin($\frac{π}{2}$+α),則$\frac{si{n}^{3}(π-α)-sin(\frac{π}{2}-α)}{3cos(\frac{π}{2}+α)+2cos(π+a)}$的值為-$\frac{3}{40}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四組函數(shù)中表示同一個函數(shù)的是( 。
A.f(x)=x0與 g(x)=1B.f(x)=|x|與$g(x)=\sqrt{x^2}$
C.f(x)=x與 $g(x)=\frac{x^2}{x}$D.$f(x)=\root{3}{x^3}$與 $g(x)={(\sqrt{x})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知命題p:2x2-3x+1≤0和命題q:x2-(2a+1)x+a(a+1≤0),若?p是?q的必要不充分條件,求實數(shù)a的取值范圍.
(2)已知p:關(guān)于x的方程x2+mx+1=0有兩個不相等的負(fù)實根;q:關(guān)于x的不等式4x2+4(m-2)x+1>0的解集為R.若“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案