【題目】某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶元,售價(jià)每瓶元,未售出的酸奶降價(jià)處理,以每瓶元的價(jià)格當(dāng)天全部處理完。據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān),如果最高氣溫不低于,需求量為瓶;如果最高氣溫位于區(qū)間,需求量為瓶;如果最高氣溫低于,需求量為瓶,為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

天數(shù)

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量不超過瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:),若該超市在六月份每天的進(jìn)貨量均為瓶,寫出的所有可能值,并估計(jì)大于零的概率.

【答案】(1)(2)

【解析】

(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.
(2)當(dāng)溫度大于等于25°C時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)°C時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20°C時(shí),需求量為200,求出Y=-100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率

(1)這種酸奶一天的需求量不超過瓶,當(dāng)且僅當(dāng)最高氣溫低于,

由表格數(shù)據(jù)知,最高氣溫低于的頻率為

所以這種酸奶一天的需求量不超過瓶的概率的估計(jì)值為.

(2)當(dāng)這種酸奶一天的進(jìn)貨量為瓶時(shí),

若最高氣溫不低于,則;

若最高氣溫位于區(qū)間,則;

若最高氣溫低于,則.

所以,的所有可能值為.

大于零當(dāng)且僅當(dāng)最高氣溫不低于,

由表格數(shù)據(jù)知,最高氣溫不低于的頻率為,

因此大于零的概率的估計(jì)值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在今年的自主招生考試成績中隨機(jī)抽取100名考生的筆試成績,分為5組制出頻率分布直方圖如圖所示.

組號

分組

頻數(shù)

頻率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?

(3)在(2)的前提下,從抽到6名學(xué)生中再隨機(jī)抽取2名被甲考官面試,求這2名學(xué)生來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中aR.

當(dāng)a=﹣1時(shí),求證:f(x)≤0;

對任意x2≥ex1>0,存在x(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為 ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.

(1)求橢圓的方程;

(2)設(shè)直線 與橢圓相交于不同的兩點(diǎn), 是線段的中點(diǎn).若經(jīng)過點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線

(1)求證:不論取何實(shí)數(shù),直線與圓總有兩個(gè)不同的交點(diǎn);

(2)設(shè)直線與圓交于點(diǎn),當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.

(1)求的通項(xiàng)公式;

(2)設(shè),記數(shù)列的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們定義漸近線:已知曲線C,如果存在一條直線,當(dāng)曲線C上任意一點(diǎn)M沿曲線運(yùn)動時(shí),M可無限趨近于該直線但永遠(yuǎn)達(dá)不到,那么這條直線稱為這條曲線的漸近線:下列函數(shù):①y= ;②y=2x﹣1;③y=lg(x﹣1);④y= ;其中有漸近線的函數(shù)的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(2,8)在拋物線,直線l和拋物線交于B,C兩點(diǎn),焦點(diǎn)F是三角形ABC的重心,MBC的中點(diǎn)(不在x軸上)

(1)求M點(diǎn)的坐標(biāo);

(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為

(1)分別求出m,n的值;

(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;

(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對其加工的零件進(jìn)行檢測,若兩人加工的合格零件個(gè)數(shù)之和大于18,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

同步練習(xí)冊答案