已知a,b∈R+,求證 
ab
a+b
2
a2+b2
2
分析:利用兩數(shù)和的平方、平方差及重要不等式即可得出.
解答:解:∵a,b∈R+,∴(
a
-
b
)2≥0
,∴a+b≥2
ab
,∴
a+b
2
ab
,當(dāng)且僅當(dāng)a=b>0時取等號.
(
a2+b2
2
)2-(
a+b
2
)2
=
a2+b2
2
-
(a+b)2
4
=
(a-b)2
4
≥0
,∴
a2+b2
2
a+b
2

a2+b2
2
a+b
2
ab
點(diǎn)評:熟練掌握兩數(shù)和的平方、平方差半徑數(shù)的大小及重要不等式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,若M=
-1a
b3
所對應(yīng)的變換TM把直線L:2x-y=3變換為自身,求實(shí)數(shù)a,b,并求M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b∈R,向量
e1
=(x,1),
e2
=(-1,b-x),函數(shù)f(x)=a-
1
e1
e2
是偶函數(shù).
(1)求b的值;
(2)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知a,b∈R且a>0,b>0,求證:
a2
b
+
b2
a
≥a+b
;
(Ⅱ)求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,AD是∠BAC的平分線,⊙O過點(diǎn)A且與BC邊相切于點(diǎn)D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

B.選修4-2:矩陣與變換
已知a,b∈R若矩陣M=
.
-1a
b3
.
所對應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.

C.選修4-4:坐標(biāo)系與參數(shù)方程
將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t為參數(shù))化為普通方程.
D.選修4-5:不等式選講
已知a,b是正數(shù),求證:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
(1)求不等式|x-3|-2|x-1|≥-1的解集;
(2)已知a,b∈R+,a+b=1,求證:(a+
1
a
)2+(b+
1
b
)2
25
2

查看答案和解析>>

同步練習(xí)冊答案