已知數(shù)列{an}、{bn}滿足an=2bn+1,{bn}是首項為1,公差為1的等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由{bn}是首項為1,公差為1的等差數(shù)列.利用等差數(shù)列的通項公式可得bn,即可得出an=2bn+1.
(2)利用等比數(shù)列與等差數(shù)列的前n項和公式可得數(shù)列{an}的前n項和Sn
解答: 解:(1)∵{bn}是首項為1,公差為1的等差數(shù)列.∴bn=1+(n-1)×1=n,
an=2bn+1=2n+1.
(2)數(shù)列{an}的前n項和Sn=(2+22+…+2n)+n
=
2(2n-1)
2-1
+n
=2n+1+n-2.
點(diǎn)評:本題考查了等比數(shù)列與等差數(shù)列的前n項和公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

利用函數(shù)定義證明f(x)=
x2
x+2
在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知B在原點(diǎn),C點(diǎn)坐標(biāo)為(0,2),且
|AB|
|AC|
=
2
,求點(diǎn)A的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定圓Q:(x-3)2+y2=64,動圓M和已知圓內(nèi)切,且過點(diǎn)P(-3,0),求圓心M的軌跡及其方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
y≥0
y≤x
2x+y-6≤0
,則目標(biāo)函數(shù)z=x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在曲線f(x)=x3+3x2+6x-10的切線中,斜率最小的切線方程為( 。
A、x-3y+6=0
B、x+3y-11=0
C、3x+y+11=0
D、3x-y-12=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足an=2bn+1,{bn}是首項為1,公差為1的等差數(shù)列.
(1)求數(shù)列{bn}的通項公式;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
m
n
,其中向量
m
=(-
3
cosx,cosx+sinx),
n
=(sinx,
cosx-sinx
2
),x∈R.
(1)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=6sin2x-2cos2x+8sinxcosx
(1)求函數(shù)f(x)的最大值;
(2)在三角形ABC中,角A、B、C的對邊分別為a、b、c,∠A為銳角,f(A)=6,且△ABC的面積為3,b+c=2+3
2
,求b,c的值.

查看答案和解析>>

同步練習(xí)冊答案