已知上是增函數(shù),在上是減函數(shù),且有三個(gè)根

(I)求的值,并求出的取值范圍;

(Ⅱ)求證:

(Ⅲ)求的取值范圍,并寫出當(dāng)取最小值時(shí)的的解析式。

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(I)因?yàn)?sub>上是增函數(shù),在上是減函數(shù),

所以的根

,由,得              

的根是,所以,所以

所以,所以

所以

   (Ⅱ)因?yàn)?sub>

所以

所以

   (Ⅲ)因?yàn)?sub>有三個(gè)根

所以

所以

           

所以,當(dāng)且僅當(dāng)時(shí)取最小值。此時(shí)。             

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本大題共15分)已知上是增函數(shù),上是減函數(shù).(1)求的值;(2)設(shè)函數(shù)上是增函數(shù),且對于內(nèi)的任意兩個(gè)變量,恒有成立,求實(shí)數(shù)的取值范圍;(3)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆四川省高三2月月考文科數(shù)學(xué) 題型:解答題

已知上是增函數(shù),在上是減函數(shù),且方程有三個(gè)根,它們分別為,2,

   (Ⅰ)求的值;     (Ⅱ)求證:;     (Ⅲ)求的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省杭州十四中2010屆高三11月月考(理) 題型:解答題

 已知上是增函數(shù),上是減函數(shù).

(1)求的值;

(2)設(shè)函數(shù)上是增函數(shù),且對于內(nèi)的任意兩個(gè)變量,恒有成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),求證:.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年宜昌一中10月月考文)(14分)

已知上是增函數(shù),在上是減函數(shù),且有三個(gè)根.

(1)求的值,并求出的取值范圍;

(2)求證:;        

  (3)求的取值范圍,并寫出當(dāng)取最小值時(shí)的的解析式.

查看答案和解析>>

同步練習(xí)冊答案