【題目】已知橢圓C: (a>b>0)的離心率為 ,直線y=x+2過橢圓C的左焦點F1

(1)求橢圓C的標準方程;

(2)設(shè)過點A(0,﹣1)的直線l與橢圓交于不同兩點M、N,當△MON的面積為 時,求直線l的方程.

【答案】(1) (2)y=±x﹣1

【解析】試題分析:(1)根據(jù)條件列關(guān)于a,b,c方程組,解方程組可得橢圓C的標準方程(2)根據(jù)點到直線距離得三角形的高,根據(jù)弦長公式得三角形底邊邊長,根據(jù)三角形面積公式列等量關(guān)系,解得直線斜率即得直線方程

試題解析:解:(1)∵直線y=x+2過橢圓C的左焦點F1.∴F1(﹣2,0),即c=2.

由離心率e=,得a=2,∴b2=a2﹣c2=4

∴橢圓C的標準方程為:

(2)依題意知過點A(0,﹣1)的直線l的斜率一定存在,故設(shè)直線l的方程為

y=kx﹣1,

設(shè)M(x1,y1),N(x2,y2

,得(1+2k2)x2﹣4kx﹣6=0

,

S△MON===

解得k=±1

直線l的方程為:y=±x﹣1

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點,且角φ的終邊經(jīng)過點P(1,﹣ ),若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( , )內(nèi)有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,x∈R,且f(x)為奇函數(shù). (I)求a的值及f(x)的解析式;
(II)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
①已知集合M滿足M{1,2,3},且M中至少有一個奇數(shù),這樣的集合M有6個;
②已知函數(shù)f(x)= 的定義域是R,則實數(shù)a的取值范圍是(﹣12,0);
③函數(shù)f(x)=loga(x﹣3)+1(a>0且a≠1)圖象恒過定點(4,2);
④已知函數(shù)f(x)=x2+bx+c對任意實數(shù)t都有f(3+t)=f(3﹣t),則f(1)>f(4)>f(3).
其中正確的命題序號是(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形, 底面, , 分別是的中點.

(1)在圖中畫出過點的平面,使得平面(須說明畫法,并給予證明);

(2)若過點的平面平面且截四棱錐所得截面的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓過點A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于B,C兩點(異于點A),線段BCy軸平分,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(Ⅰ)求橢圓的方程;

(Ⅱ)已知橢圓的左焦點為,直線與橢圓交于不同兩點,都在軸上方),

(。┤,求的面積;

(ⅱ)直線是否恒過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱中,底面,底面是梯形,,,.

(1)求證:平面平面;

(2)在線段上是否存在一點,使平面,若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案