【題目】l1 , l2 , l3是空間三條不同的直線,則下列命題正確的是(
A.l1⊥l2 , l2⊥l3l1∥l3
B.l1⊥l2 , l2∥l3l1⊥l3
C.l1∥l2∥l3l1 , l2 , l3共面
D.l1 , l2 , l3共點l1 , l2 , l3共面

【答案】B
【解析】對于A,通過常見的圖形正方體,從同一個頂點出發(fā)的三條棱兩兩垂直,得到A錯 對于B,∵l1⊥l2 , ∴l(xiāng)1 , l2所成的角是90°,
又∵l2∥l3∴l(xiāng)1 , l3所成的角是90°
∴l(xiāng)1⊥l2得到B對
對于C,例如三棱柱中的三側(cè)棱平行,但不共面,故C錯
對于D,例如三棱錐的三側(cè)棱共點,但不共面,故D錯
故選B
【考點精析】本題主要考查了平面的基本性質(zhì)及推論的相關(guān)知識點,需要掌握如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若圓C與圓(x+2)2+(y-1)2=1關(guān)于原點對稱,則圓C的方程是(
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y-1)2=1
C.(x-1)2+(y+2)2=1
D.(x+1)2+(y-2)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“直線l與平面α無公共點”是“l(fā)∥α”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a>1”是“函數(shù)f(x)=ax+cosx在R上單調(diào)遞增”的(  )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由①正方形的對角線相等;②平行四邊形的對角線相等;③正方形是平行四邊形,根據(jù)“三段論”推理出一個結(jié)論,則這個結(jié)論是(
A.正方形的對角線相等
B.平行四邊形的對角線相等
C.正方形是平行四邊形
D.以上均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某微信群中甲、乙、丙、丁、卯五名成員同時搶4個紅包,每人最多搶一個,且紅包被全部搶光,4個紅包中有兩個2元,兩個3元(紅包中金額相同視為相同的紅包),則甲乙兩人都搶到紅包的情況有(
A.35種
B.24種
C.18種
D.9種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有編號依次為1,23,45,66名學生參加數(shù)學競賽選拔賽,今有甲、乙、丙、丁四位老師在猜誰將得第一名,甲猜不是3號就是5號;乙猜6號不可能;丙猜2,34號都不可能;丁猜是1,2,4號中的某一個.若以上四位老師中只有一位老師猜驛,則猜對者是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題“三角形的任意兩邊之和大于第三邊”.類比上述結(jié)論,你能得到:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若全集U=R,集合M={x|x(x﹣2)≤0},N={1,2,3,4},則N∩UM=

查看答案和解析>>

同步練習冊答案