平面幾何中,有邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊距離之和為定值
3
2
a
,類比上述命題,棱長(zhǎng)為a的正四面體內(nèi)任一點(diǎn)到四個(gè)面的距離之和為( 。
分析:由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時(shí),常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).固我們可以根據(jù)已知中平面幾何中,關(guān)于線的性質(zhì)“正三角形內(nèi)任意一點(diǎn)到三邊距離之和是一個(gè)定值”,推斷出一個(gè)空間幾何中一個(gè)關(guān)于面的性質(zhì).
解答:解:類比在邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊的距離之和為定值
3
2
a
,
在一個(gè)正四面體中,計(jì)算一下棱長(zhǎng)為a的三棱錐內(nèi)任一點(diǎn)到各個(gè)面的距離之和,
如圖:
由棱長(zhǎng)為a可以得到BF=
3
2
a
,BO=AO=
6
3
a-OE,
在直角三角形中,根據(jù)勾股定理可以得到
BO2=BE2+OE2,
把數(shù)據(jù)代入得到OE=
6
12
a,
∴棱長(zhǎng)為a的三棱錐內(nèi)任一點(diǎn)到各個(gè)面的距離之和4×
6
12
a=
6
3
a,
故選B.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查類比推理及正四面體的體積的計(jì)算,轉(zhuǎn)化思想的應(yīng)用,考查空間想象能力,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面幾何中有命題“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長(zhǎng)的
3
2
倍”,請(qǐng)你寫出此命題在立體幾何中類似的真命題
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記三角形面積為S,三條邊長(zhǎng)分別為a,b,c,內(nèi)切圓半徑為r,則平面幾何有性質(zhì):S=
1
2
(a+b+c)•r.若記四面體的體積為V,四個(gè)面面積分別為S1,S2,S3,S4,內(nèi)切球半徑為R,請(qǐng)你用類比方法寫出立體幾何中相似的性質(zhì)
V=
1
3
(S1+S2+S3+S4)•R
V=
1
3
(S1+S2+S3+S4)•R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省慶陽(yáng)市華池一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

平面幾何中,有邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,類比上述命題,棱長(zhǎng)為a的正四面體內(nèi)任一點(diǎn)到四個(gè)面的距離之和為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面幾何中,有邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊距離之和為定值
3
2
a
,類比上述命題,棱長(zhǎng)為a的正四面體內(nèi)任一點(diǎn)到四個(gè)面的距離之和為( 。
A.
4
3
a
B.
6
3
a
C.
5
4
a
D.
6
4
a

查看答案和解析>>

同步練習(xí)冊(cè)答案