【題目】已知在等差數(shù)列{an}中,Sn為其前n項和,a2=2,S5=15;等比數(shù)列{bn}的前n項和 .
( I)求數(shù)列{an},{bn}的通項公式;
( II)設(shè)cn=anbn , 求數(shù)列{cn}的前n項和Cn .
【答案】解:(Ⅰ)設(shè)等差數(shù)列{an}的首項為a1,公差為d,
由a2=2,S5=15,得 ,解得 .
∴an=1+(n﹣1)×1=n;
由 ,得b1=1,
當(dāng)n≥2時, ,
且b1滿足上式, ;
(Ⅱ) ,
∴ ,
則 ,
∴﹣ ,
∴
【解析】(1)先由a2=2,S5=15可得an=n,再根據(jù)數(shù)列的前n項和T n與的關(guān)系,可求;
(2)看到一個等差數(shù)列與一個等比數(shù)列的乘積構(gòu)成的新數(shù)列求和,那就用錯位相減法,即可;
【考點(diǎn)精析】掌握等差數(shù)列的通項公式(及其變式)和等比數(shù)列的通項公式(及其變式)是解答本題的根本,需要知道通項公式:或;通項公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣2ax)有兩個極值點(diǎn),則a的取值范圍為( 。
A.(﹣∞,1)
B.
C.(0,1)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),當(dāng)x∈(0,2]時,f(x)=2x﹣1,函數(shù)g(x)=x2﹣2x+m.如果對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知總體的各個體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,平均數(shù)為10.若要使該總體的方差最小,則a、b的取值分別是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)既是奇函數(shù)又在(0,+∞)上單調(diào)遞減的是( )
A.f(x)=x4
B.
C.
D.f(x)=x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記函數(shù)f(x)=lg(1﹣ax2)的定義域、值域分別為集合A,B.
(1)當(dāng)a=1時,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是圓O:x2+y2=4上的動點(diǎn),點(diǎn)A(4,0),若直線y=kx+1上總存在點(diǎn)Q,使點(diǎn)Q恰是線段AP的中點(diǎn),則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)滿足f(3﹣x)=f(3+x),又f(x)是[0,3]上的增函數(shù),且f(a)≥f(0),那么實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 經(jīng)過點(diǎn) ,離心率為 , 為坐標(biāo)原點(diǎn).
(I)求橢圓 的方程.
(II)若點(diǎn) 為橢圓 上一動點(diǎn),點(diǎn) 與點(diǎn) 的垂直平分線l交 軸于點(diǎn) ,求 的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com