已知橢圓
x2
20
+
y2
k
=1
的焦距為6,則k的值為( 。
A.13或27B.11或29C.15或28D.10或26
∵橢圓
x2
20
+
y2
k
=1的焦距為6,
∴當(dāng)橢圓的焦點(diǎn)在x軸時(shí),c2=a2-b2=20-k=9,
解得k=11;
當(dāng)橢圓的焦點(diǎn)在y軸時(shí),同理可得k-20=9,
解得k=29.
∴k的值為11或29.
故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,橢圓
x2
25
+
y2
9
=1
上的點(diǎn)M到焦點(diǎn)F1的距離為2,N為MF1的中點(diǎn),則|ON|(O為坐標(biāo)原點(diǎn))的值為( 。
A.4B.2C.8D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓
x2
3
+
y2
4
=1
的焦點(diǎn)為F1、F2,P為橢圓上一點(diǎn),且|PF1|=3|PF2|,則|PF1|的值為( 。
A.3B.1C.
3
3
2
D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1,F(xiàn)2是橢圓
x2
k+2
+
y2
k+1
=1
的左、右焦點(diǎn),過F1的直線交橢圓于A,B兩點(diǎn),若△ABF2的周長為8,則k的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長、短軸端點(diǎn)分別為A、B,從橢圓上一點(diǎn)M(在x軸上方)向x軸作垂線,恰好通過橢圓的左焦點(diǎn)F1
AB
OM

(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)1、F2分別是左、右焦點(diǎn),求∠F1QF2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P是橢圓
x2
16
+
y2
25
=1
上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( 。
A.4B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從橢圓短軸的一個(gè)端點(diǎn)看長軸的兩個(gè)端點(diǎn)的視角為120°,那么此橢圓的離心率為( 。
A.
1
2
B.
2
2
C.
3
3
D.
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點(diǎn);M為橢圓上一點(diǎn),MF1垂直于x軸,且∠F1MF2=60°,則橢圓的離心率為( 。
A.
1
2
B.
2
2
C.
3
3
D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率e=
3
2
,則橢圓的方程為(  )
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1

查看答案和解析>>

同步練習(xí)冊答案