13.若集合A={x|2x>x2},B={y|y=2x,x∈A},則集合A∩B等于( 。
A.(0,2)B.(0,4)C.(1,2)D.(0,+∞)

分析 先分別求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={x|2x>x2}={x|0<x<2},
B={y|y=2x,x∈A}={y|1<y<4},
∴集合A∩B={x|1<x<2}=(1,2).
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0,若a是從區(qū)間[0,4]上任取的一個(gè)數(shù),b是從區(qū)間[0,3]上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.?dāng)?shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*
(1)若an=n2-n,試判斷{△an}是否是等差數(shù)列,并說(shuō)明理由;
(2)若a1=1,△an-an=2n,求數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)(b)中的數(shù)列{an},是否存在等差數(shù)列{bn},使得b1C${\;}_{n}^{1}$+b2C${\;}_{n}^{2}$+…+bnC${\;}_{n}^{n}$=an,對(duì)一切n∈N*都成立,若存在,求出數(shù)列{bn}的通項(xiàng)公式,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)求不等式x2-4x+3≤0的解集;
(2)求函數(shù)y=x+$\frac{4}{x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,在正方體中,E,F(xiàn)是棱A'B'與D'C'的中點(diǎn),面EFCB與面ABCD所成二面角(取銳角)的正切值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.△ABC中,D為BC邊的中點(diǎn),tan∠BAD•tan∠C=1,則△ABC是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)A={x|2≤x<4},B={x|x≥3},求A∪B,A∩B,∁RA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=x2,g(x)=mlnx(m>0),已知f(x),g(x)在x=x0處的切線(xiàn)l相同.
(1)求m的值及切線(xiàn)l的方程;
(2)設(shè)函數(shù)h(x)=ax+b,若存在實(shí)數(shù)a,b使得關(guān)于x的不等式g(x)≤h(x)≤f(x)+1對(duì)(0,+∞)上的任意實(shí)數(shù)x恒成立,求a的最小值及對(duì)應(yīng)的h(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖是正方體的平面展開(kāi)圖.在這個(gè)正方體中,
①BM與ED是異面直線(xiàn);
②CN與BE平行;
③CN與BM成60°角;
④DM與BN垂直.
以上四個(gè)命題中,正確命題的序號(hào)是( 。
A.①②③④B.②④C.②③④D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案