【題目】如圖,在三棱錐中,分別是的中點,
(1) 求證:平面;
(2) 求異面直線與所成角的余弦值;
(3) 求點到平面的距離。
【答案】
【解析】
試題分析:(I)欲證AO⊥平面BCD,根據(jù)直線與平面垂直的判定定理可知只需證AO與平面BCD內(nèi)兩相交直線垂直,而CO⊥BD,AO⊥OC,BD∩OC=O,滿足定理;
(II)以O為原點,OB為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,異面直線AB與CD的向量坐標,求出兩向量的夾角即可;
(III)求出平面ACD的法向量,點E到平面ACD的距離轉(zhuǎn)化成向量EC在平面ACD法向量上的投影即可.
解:(I)證明:連結(jié)OC
在中,由已知可得
而 即
平面
(II)解:取AC的中點M,連結(jié)OM、ME、OE,由E為BC的中點知
直線OE與EM所成的銳角就是異面直線AB與CD所成的角
在中,
是直角斜邊AC上的中線,
(III)解:設(shè)點E到平面ACD的距離為
在中,
而
點E到平面ACD的距離為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com