【題目】在梯形中,,.將梯形所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的表面積為( )

A. B. C. D.

【答案】A

【解析】

將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體是:一個底面半徑為AB=1,高為BC=2的圓柱減去一個底面半徑為AB=1,高為BC﹣AD=2﹣1=1的圓錐,由此能求出該幾何體的表面積.

在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,

將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體是:

一個底面半徑為AB=1,高為BC=2的圓柱減去一個底面半徑為AB=1,

高為BC﹣AD=2﹣1=1的圓錐,

幾何體的表面積為:

S=π×12+2π×1×2+

=(5+)π.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,).

(1)求函數(shù)的零點;

(2)設(shè)、均為正整數(shù),且為最簡根式,若存在,使得可唯一表示為的形式(),求證:

(3)已知,是否存在,使得

成立,若存在,試求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有兩個不同的解,則實數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)aR).

1)討論yfx)的單調(diào)性;

2)若函數(shù)fx)有兩個不同零點x1,x2,求實數(shù)a的范圍并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù) 滿足:,且 其中 ,則以向量 為法向量的直線的傾斜角的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,直線的方程為,直線 的方程為.當(dāng)m變化時,

(1)分別求直線經(jīng)過的定點坐標(biāo);

(2)討論直線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱且過點,直線的方程為:.

1)證明:直線與圓相交;

2)記直線與圓的兩個交點為,.

①若弦長,求實數(shù)的值;

②求面積的最大值及面積的最大時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取n人進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳組的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

P

第三組

100

0.5

第四組

a

0.4

第五組

30

0.3

第六組

15

0.3

1)補全頻率分布直方圖,并求na,p的值;

2)求年齡段人數(shù)的中位數(shù)和眾數(shù);(直接寫出結(jié)果即可)

3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取3人作為領(lǐng)隊,求選取的3名領(lǐng)隊中年齡都在歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,(注:利潤與投資單位:萬元)

1)分別將,兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系,并寫出它們的函數(shù)關(guān)系式;

2)該企業(yè)已籌集到10萬元資金,全部投入到,兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).

查看答案和解析>>

同步練習(xí)冊答案