如圖,正方體ABCD-A1B1C1D1的棱長為1,O是底面A1B1C1D1的中心,則點(diǎn)O到平面ABC1D1的距離為    .
以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系如圖所示,

則A(1,0,0),B(1,1,0),D1(0,0,1),C1(0,1,1),O(,,1),
=(0,1,0),=(-1,0,1),
設(shè)平面ABC1D1的法向量n=(x,y,z),


令x=1,得n=(1,0,1).
=(-,-,0),
∴O到平面ABC1D1的距離d===.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是以為直徑的半圓上異于、的點(diǎn),矩形所在的平面垂直于半圓所在的平面,且.

(1)求證:;
(2)若異面直線所成的角為,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐O—ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA中點(diǎn)。

(1)求證:直線BD⊥平面OAC;
(2)求直線MD與平面OAC所成角的大;
(3)求點(diǎn)A到平面OBD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形ABCD的邊長為2,AC∩BD=O.將正方形ABCD沿對角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.

(1)當(dāng)a=2時,求證:AO⊥平面BCD.
(2)當(dāng)二面角A-BD-C的大小為120°時,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱(側(cè)棱和底面垂直的棱柱)中,,,,且滿足.

(1)求證:平面側(cè)面;
(2)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若平面α的一個法向量為n=(4,1,1),直線l的一個方向向量為a=(-2,-3,3),則l與α所成角的正弦值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知l∥α,且l的方向向量為u=(2,m,1),平面α的法向量為v=(1,,2),則m=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過正方形ABCD的頂點(diǎn)A,引PA⊥平面ABCD.若PABA,則平面ABP和平面CDP所成的二面角的大小是(  ).
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知空間三點(diǎn)A(1,1,1),B(-1,0, 4),C(2,-2,3),則的夾角θ的大小是(  )
A.B.πC.D.π

查看答案和解析>>

同步練習(xí)冊答案