9.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=x+y的最小值為( 。
A.1B.$\frac{6}{5}$C.$\frac{3}{2}$D.2

分析 畫出可行域,將z變形為y=-x+z,利用其幾何意義求最小值.

解答 解:x,y滿足的可行域如圖:由z=x+y得到y(tǒng)=-x+z,當(dāng)此直線經(jīng)過C時,z最小,
由$\left\{\begin{array}{l}{2x-y=0}\\{x+2y-2=0}\end{array}\right.$,得到C($\frac{2}{5},\frac{4}{5}$),
所以z的最小值為$\frac{2}{5}+\frac{4}{5}=\frac{6}{5}$;
故選:B

點評 本題考查了簡單線性規(guī)劃問題;正確畫出可行域,利用目標函數(shù)的幾何意義求其最值是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ln(x+1)-$\frac{ax}{x+2}$.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)x>0時,f(x)>0恒成立,求a的取值范圍;
(3)證明:n+1>e${\;}^{\frac{2}{3}+\frac{2}{5}+…+\frac{2}{2n+1}}}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z滿足(2-i)z=5,則z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若$\overrightarrow{a}$=(1,2,0),$\overrightarrow$=(-2,1,x),且以$\overrightarrow{a}$,$\overrightarrow$為鄰邊的平行四邊形的面積為3$\sqrt{5}$,則實數(shù)x的值為±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,D是Rt△BAC斜邊BC上的一點,AC=$\sqrt{3}$DC.
(1)若BD=2DC=2,求AD的長.
(2)若AB=AD,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.三棱錐O-ABC中,OA,OB,OC兩兩互相垂直,OC=1,OA=x,OB=y,若x+y=4,則三棱錐O-ABC的體積的最大值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,A,B 為其左右頂點,P是橢圓上異于A,B一點,直線AP與直線x=a交于點M,AP,BP 的斜率乘積為$-\frac{1}{2}$.
(Ⅰ)求橢圓的離心率;
(Ⅱ)當(dāng)點M縱坐標為$2\sqrt{6}$時,AM=4AP,求橢圓的方程;
(Ⅲ)若a=2,過M作直線BP的垂線l,問直線l是否恒過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=alnx+$\frac{6}{x}$(a∈R).
(1)當(dāng)a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)如果函數(shù)g(x)=f(x)-2x在(0,+∞)上單調(diào)遞減,求實數(shù)a的取值范圍;
(3)當(dāng)a>0時,討論函數(shù)y=f(x)-$\frac{5}{x}$零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時,xf′(x)-f(x)>0,則使得函數(shù)f(x)>0成立的x取值范圍是( 。
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

同步練習(xí)冊答案