【題目】已知命題p:存在x0∈R,使;命題q:對任意x∈R,mx2+mx+1>0;若p∨q為真,p∧q為假,求實數(shù)m的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是空氣質(zhì)量的一個重要指標(biāo),我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標(biāo).如圖是某地月日到日日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是( )
A.從日到日,日均值逐漸降低
B.這天的日均值的中位數(shù)是
C.這天中日均值的平均數(shù)是
D.從這天的日均監(jiān)測數(shù)據(jù)中隨機抽出一天的數(shù)據(jù),空氣質(zhì)量為一級的概率是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過點的橢圓的離心率為,左頂點和上頂點分別為A,B.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段OD延長線上一點,直線PA交橢圓于另一點E,直線PB交橢圓于另一點Q.
①求直線PA與PB的斜率之積;
②判斷直線AB與EQ是否平行?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道,地球上的水資源有限,愛護地球、節(jié)約用水是我們每個人的義務(wù)和責(zé)任.某市政府為了對自來水的使用進行科學(xué)管理,節(jié)約水資源,計劃確定一個家庭年用水量的標(biāo)準(zhǔn),為此,對全市家庭日常用水的情況進行抽樣調(diào)查,并獲得了個家庭某年的用水量(單位:立方米),統(tǒng)計結(jié)果如下表所示.
(Ⅰ)分別求出的值;
(Ⅱ)若以各組區(qū)間中點值代表該組的取值,試估計全市家庭平均用水量;
(Ⅲ)從樣本中年用水量在(單位:立方米)的個家庭中任選個,作進一步跟蹤研究,求年用水量最多的家庭被選中的概率(個家庭的年用水量都不相等).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設(shè)圓與直線交于點,若點的坐標(biāo)為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓M與圓F1:x2+y2+6x+5=0外切,同時與圓F2:x2+y2﹣6x﹣91=0內(nèi)切.
(1)求動圓圓心M的軌跡方程E,并說明它是什么曲線;
(2)若直線yx+m與(1)中的軌跡E有兩個不同的交點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù).
(1) 列舉出所有可能的結(jié)果,并求兩點數(shù)之和為5的概率;
(2) 求以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點在圓 的內(nèi)部的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極坐標(biāo)建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
求的普通方程;
將圓平移,使其圓心為,設(shè)是圓上的動點,點與關(guān)于原點對稱,線段的垂直平分線與相交于點,求的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F兩點,圓O內(nèi)的動點D使得DE,DO,DF成等比數(shù)列,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com