已知是定義在上的偶函數(shù),且時,。
(1)求,
(2)求函數(shù)的表達式;
(3)若,求的取值范圍。

(1) , ;(2) ;(3) .

解析試題分析:(1) 
  
(2)設,則

時, 
 
(3)∵上為增函數(shù),
上為減函數(shù)。
由于
 
  
考點:本題主要考查分段函數(shù)的概念,函數(shù)的奇偶性,函數(shù)的單調性,抽象函數(shù)不等式解法。
點評:典型題,分段函數(shù)奇偶性討論,要注意運用轉化思想,注意分類討論全面。抽象函數(shù)不等式問題,一般的,要利用函數(shù)奇偶性,轉化成函數(shù)值大小關系,再利用單調性,建立具體不等式。應特別注意不要忽視函數(shù)的定義域。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當時,
(1)求的值;
(2)當時,求的解析式;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),,且恒成立.
(1)求a、b的值;
(2)若對,不等式恒成立,求實數(shù)m的取值范圍.
(3)記,那么當時,是否存在區(qū)間),使得函數(shù)在區(qū)間上的值域恰好為?若存在,請求出區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共13分)
已知函數(shù)).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)函數(shù)的圖像在處的切線的斜率為若函數(shù),在區(qū)間(1,3)上不是單調函數(shù),求 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),的兩個極值點為,線段的中點為.
(1) 如果函數(shù)為奇函數(shù),求實數(shù)的值;當時,求函數(shù)圖象的對稱中心;
(2) 如果點在第四象限,求實數(shù)的范圍;
(3) 證明:點也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)求的單調區(qū)間;
(2)若內恒成立,求實數(shù)a的取值范圍;
(3),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)的圖象關于原點對稱,且.
(1)求函數(shù)的解析式;
(2)若在[-1,1]上是增函數(shù),求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.
(1)求數(shù)列,的通項公式;
(2)記=,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.(本小題滿分12分)
已知函數(shù),是常數(shù))在x=e處的切線方程為,既是函數(shù)的零點,又是它的極值點.
(1)求常數(shù)a,b,c的值;
(2)若函數(shù)在區(qū)間(1,3)內不是單調函數(shù),求實數(shù)m的取值范圍;
(3)求函數(shù)的單調遞減區(qū)間,并證明:

查看答案和解析>>

同步練習冊答案