設(shè)M是△ABC內(nèi)任一點(diǎn),且=2,∠BAC=30°,設(shè)△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標(biāo)系中,以x,y為坐標(biāo)的點(diǎn)(x,y)的軌跡圖形是( )
A.
B.
C.
D.
【答案】分析:先求出AB•AC,再求出△ABC的面積,再利用△ABC的面積等于x+y+z及Z=,可得 x+y=,
0≤x≤,0≤y≤
解答:解:∵=AB•AC•cos30°=2,∴AB•AC=4,
△ABC的面積為 AB•AC sin30°=1,由題意知 x+y+z=1,再由Z=,
∴x+y=,0≤x≤,0≤y≤
故選 A.
點(diǎn)評(píng):本題考查兩個(gè)向量的數(shù)量積的定義,以及三角形的面積公式的應(yīng)用,直線的一般式方程的特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是△ABC內(nèi)任一點(diǎn),且
AB
AC
=2
3
,∠BAC=30°,設(shè)△MBC,△MAC,△MAB的面積分別x,y,z,且Z=
1
2
,則在平面直角中坐標(biāo)系中,以x,y為坐標(biāo)的點(diǎn)(x,y)的軌跡圖形是(  )
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)M是△ABC內(nèi)任一點(diǎn),且=2,∠BAC=30°,設(shè)△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標(biāo)系中,以x,y為坐標(biāo)的點(diǎn)(x,y)的軌跡圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷1(理科)(解析版) 題型:選擇題

設(shè)M是△ABC內(nèi)任一點(diǎn),且=2,∠BAC=30°,設(shè)△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標(biāo)系中,以x,y為坐標(biāo)的點(diǎn)(x,y)的軌跡圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市英山一中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:選擇題

設(shè)M是△ABC內(nèi)任一點(diǎn),且=2,∠BAC=30°,設(shè)△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標(biāo)系中,以x,y為坐標(biāo)的點(diǎn)(x,y)的軌跡圖形是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案