(2012•福建)直線x+
3
y
-2=0與圓x2+y2=4相交于A,B兩點(diǎn),則弦AB的長(zhǎng)度等于( 。
分析:由直線與圓相交的性質(zhì)可知,d2+(
AB
2
)
2
=4
,要求AB,只要先求圓心(0,0)到直線x+
3
y
-2=0的距離d,即可求解
解答:解:∵圓心(0,0)到直線x+
3
y
-2=0的距離d=
2
1+3
=1

由直線與圓相交的性質(zhì)可知,d2+(
AB
2
)
2
=4

1+
AB2
4
=4

AB=2
3

故選B
點(diǎn)評(píng):本題主要考查了直線與圓相交的性質(zhì),解題的關(guān)鍵是公式d2+ (
l
2
) 2=r2
的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京)直線
x=2+t
y=-1-t
(t為參數(shù))與曲線
x=3cosα
y=3sinα
 (α為參數(shù))的交點(diǎn)個(gè)數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建)若直線y=2x上存在點(diǎn)(x,y)滿足約束條件
x+y-3≤0
x-2y-3≤0
x≥m
,則實(shí)數(shù)m的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建模擬)平面內(nèi)動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線x=-1的距離,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)若點(diǎn)A,B,C是Γ上的不同三點(diǎn),且滿足
FA
+
FB
+
FC
=0
.證明:△ABC不可能為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對(duì)應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案