【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,因而也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標系中的“太極圖”,整個圖形是一個圓形,其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個半圓.給出以下命題:

①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是;

②當時,直線與黑色陰影部分有公共點;

③當時,直線與黑色陰影部分有兩個公共點.

其中所有正確結(jié)論的序號是()

A.B.C.D.①②

【答案】D

【解析】

①:根據(jù)圓的對稱性可以陰影部分的面積是圓的面積一半,可以求出在太極圖中隨機取一點,此點取自黑色陰影部分的概率的大;

②:當時,可以求出陰影部分在第一象限內(nèi)半圓的圓心坐標,求出圓心到直線距離,這樣可以判斷出半圓與直線的關(guān)系,最后可以判斷出直線與黑色陰影部分是否有公共點;

③:當時,直線表示橫軸,此時直線與陰影部分有無窮多個交點,所以可以判斷出本結(jié)論是否正確.

①:因為陰影部分的面積是圓的面積一半,所以在太極圖中隨機取一點,此點取自黑色陰影部分的概率的大小為,故本結(jié)論是正確的;

②:當時,陰影部分在第一象限內(nèi)半圓的圓心坐標為,半徑為1,它到直線的距離為,所以直線與半圓相切,因此直線與黑色陰影部分有公共點,故本結(jié)論是正確的;

③:當時,直線表示橫軸,此時直線與陰影部分有無窮多個交點,故本結(jié)論是錯誤的,因此只有結(jié)論①②是正確的,故本題選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓上任意一點到其兩個焦點的距離之和等于,焦距為2c,圓,,是橢圓的左、右頂點,AB是圓O的任意一條直徑,四邊形面積的最大值為

(1)求橢圓C的方程;

(2)如圖,若直線與圓O相切,且與橢圓相交于MN兩點,直線平行且與橢圓相切于PO,P兩點位于的同側(cè)),求直線,距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當時,在定義域內(nèi)恒成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若,對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,點M,N分別為線段,的中點,,,

(1)證明:

(2)求平面與平面所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點E在橢圓上,以E為圓心的圓與x軸相切于橢圓C的右焦點,與y軸相交于A,B兩點,且是邊長為2的正三角形.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知圓,設(shè)圓O上任意一點P處的切線交橢圓CMN兩點,試判斷以為直徑的圓是否過定點?若過定點,求出該定點坐標,并直接寫出的值;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有四個關(guān)于命題的判斷,其中正確的是()

A.命題,是假命題

B.命題,則是真命題

C.命題,的否定是,

D.命題中,若,則是鈍角三角形是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù).滿分為100分).從中隨機抽取一個容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分數(shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:

(1)算出第三組的頻數(shù).并補全頻率分布直方圖;

(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求 的單調(diào)區(qū)間;

(2)若曲線 與直線只有一個交點, 求實數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案