.為雙曲線
上的一點,
為一個焦點,以
為直徑的圓與圓
的位置關系是
內切
內切或外切
.外切
.相離或相交
本題考查曲線位置關系判定。若F左焦點,P點在左支曲線上,兩圓外切,若F左焦點,P點在右支曲線上,兩圓內切。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
在平面直角坐標系中,N為圓C:
上的一動點,點D(1,0),點M是DN的中點,點P在線段CN上,且
.
(Ⅰ)求動點P表示的曲線E的方程;
(Ⅱ)若曲線E與x軸的交點為
,當動點P與A,B不重合時,設直線
與
的斜率分別為
,證明:
為定值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線
與圓
相切,過
的一個焦點且斜率為
的直線也與圓
相切.
(Ⅰ)求雙曲線
的方程;
(Ⅱ)
是圓
上在第一象限的點,過
且與圓
相切的直線
與
的右支交于
、
兩點,
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
點M到(3,0)的距離比它到直線ⅹ+4=0的距離小1,則點M的軌跡方程為( )
A.y²=12ⅹ | B.y²=12ⅹ(ⅹ?0) |
C.y²=6ⅹ | D.y²=6ⅹ(ⅹ?0) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
給出下列三個命題
①若
,則
②若正整數(shù)m和n滿足
,則
③設
為圓
上任一點,圓O
2以
為圓心且半徑為1.當
時,圓O
1與圓O
2相切
其中假命題的個數(shù)為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
的準線為
,焦點為
,圓
的圓心在
軸的正半軸上,且與
軸相切,過原點
作傾斜角為
的直線
,交
于點
,交圓
于另一點
,且
(1)求圓
和拋物線C的方程;
(2)若
為拋物線C上的動點,求
的最小值;
(3)過
上的動點Q向圓
作切線,切點為S,T,
求證:直線ST
恒過一個定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
,則當在此橢圓上存在不同兩點關于直線
對稱時
的取值范圍為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知圓C:
(1)若平面上有兩點A(1 , 0),B(-1 , 0),點P是圓C上的動點,求使
取得最小值時點P的坐標.
(2) 若
是
軸上的動點,
分別切圓
于
兩點
①若
,求直線
的方程;
②求證:直線
恒過一定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,過拋物線
焦點的直線依次交拋物線與圓
于點A、B、C、D,則
的值是_____
查看答案和解析>>