已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

(Ⅰ).(Ⅱ)m的取值范圍是(1,2).

解析試題分析:(Ⅰ)因?yàn)橹本經(jīng)過點(diǎn),0),
所以,得.又因?yàn)閙>1,所以,
故直線的方程為.
(Ⅱ)設(shè),由,消去x,
,
則由,知<8,
且有
可知,
由題意可知,<0,
=()(
所以<0,即 
又因?yàn)閙>1且>0,從而1<m<2,
故m的取值范圍是(1,2).
考點(diǎn):本題主要考查直線方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系。
點(diǎn)評(píng):典型題,涉及橢圓標(biāo)準(zhǔn)方程問題,要求熟練掌握a,b,c,e的關(guān)系,涉及直線與橢圓的位置關(guān)系,往往通過聯(lián)立方程組,得到一元二次方程,利用韋達(dá)定理實(shí)現(xiàn)整體代換。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)且斜率不為的直線交橢圓,兩點(diǎn).試問軸上是否存在定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知三點(diǎn),曲線上任一點(diǎn)滿足=
(1) 求曲線的方程;
(2) 設(shè)是(1)中所求曲線上的動(dòng)點(diǎn),定點(diǎn),線段的垂直平分線與軸交于點(diǎn),求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是它的一個(gè)焦點(diǎn),又點(diǎn)在該橢圓上.
(1)求橢圓的方程;
(2)若斜率為直線與橢圓交于不同的兩點(diǎn),當(dāng)面積的最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
拋物線頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)與橢圓的右焦點(diǎn)重合,過點(diǎn)斜率為的直線與拋物線交于,兩點(diǎn).

(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知直線l1:4x:-3y+6=0和直線l2x=-p/2:.若拋物線C:y2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(I )求拋物線C的方程;
(II)若以拋物線上任意一點(diǎn)M為切點(diǎn)的直線l與直線l2交于點(diǎn)N,試問在x軸上是否存 在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.

(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點(diǎn),,且(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連結(jié)AD、BD得到
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)的面積是否為定值?若為定值,求出此定值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案