用數(shù)學(xué)歸納法證明12+22+32+42+…+n2 = 

 

【答案】

見(jiàn)解析.

【解析】用數(shù)學(xué)歸納法要分兩個(gè)步驟:一是驗(yàn)證n取最小的整數(shù)是否成立

二是假設(shè)n=k時(shí),命題成立,然后再證明當(dāng)n=k+1時(shí),命題也成立,在證明時(shí),必須要用上n=k時(shí)的歸納假設(shè),否則證明無(wú)效這兩個(gè)步驟上相輔相成的,缺一不可

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明
1
2
+cosα+cos3α+…+cos(2n-1)α=
sin
2n+1
2
a•cos
2n-1
2
a
sina
(k∈Z*,α≠kπ,n∈N+),在驗(yàn)證n=1時(shí),左邊計(jì)算所得的項(xiàng)是
1
2
+cosα
1
2
+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12
n(2n2+1)
3
時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)
3
時(shí),從“k到k+1”左邊需增加的代數(shù)式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)3
時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是
(k+1)2+k2
(k+1)2+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明12+22+32+…+n2=
n(n+1)(2n+1)6
,(n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案