在△ABC中,AD是BC邊上的中線,且AC=2AB=2AD=4,則BD=
6
6
分析:依題意,
AD
=
1
2
AB
+
AC
),等號(hào)兩端平方,利用余弦定理可求得BC的長(zhǎng),從而可得答案.
解答:解:在△ABC中,∵AD是BC邊上的中線,
AD
=
1
2
AB
+
AC
),等號(hào)兩端平方,
AD
2
=
1
4
AB
2
+
AC
2
+2|
AB
|•|
AC
|cosA)
即22=
1
4
(22+42+2×2×4cosA),
∴cosA=-
1
4

∴有余弦定理得:|BC|2=a2=b2+c2-2bccosA
=4+16-2×2×4×(-
1
4

=24,
∴a=2
6

∴|BD|=
1
2
|BC|=
1
2
a=
6

故答案為:
6
點(diǎn)評(píng):本題考查向量間的位置關(guān)系,考查向量的模與向量的數(shù)量積及余弦定理,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選做題(請(qǐng)考生在以下三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(選修4-4坐標(biāo)系與參數(shù)方程)將參數(shù)方程
x=e2+e-2
y=2(e2-e-2)
(e為參數(shù))化為普通方程是
 

B.(選修4-5 不等式選講)不等式|x-1|+|2x+3|>5的解集是
 

C.(選修4-1 幾何證明選講)如圖,在△ABC中,AD是高線,CE是中線,|DC|=|BE|,DG⊥CE于G,且|EC|=8,則|EG|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 在△ABC中,AD是BC邊上的高,垂足為D點(diǎn).BE是∠ABC的角平分線,并交AC于E點(diǎn).若BC=6,CA=7,AB=8.
(1)求DE的長(zhǎng);
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD是BC邊上的中線,AB=5,AC=3,AD=2,求:BC的長(zhǎng)及面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖所示,在△ABC中,AD是BC邊上的中線,F(xiàn)是AD上的一點(diǎn),且=15,連CF并延長(zhǎng)交AB于E,則=_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案