設(shè)全集I=R,已知集合數(shù)學(xué)公式
(Ⅰ)求(?IM)∩N;
(Ⅱ)記集合A={2},已知B={x|a-1≤x≤5-a,a∈R},若A∩B=B,求實數(shù)a的取值范圍.

解:(Ⅰ)M={-3},N={2,-3},∴(CIM)∩N={2}.
(Ⅱ)A={2},因為A∩B=B,所以B⊆A.
當(dāng)B=φ時,a-1>5-a,∴a>3;
當(dāng)B≠φ時,a-1=5-a=2,∴a=3,
綜上得a≥3.
分析:(I)首先化簡集合M和N,然后根據(jù)補集和交集定義得出答案;
(II)由A∩B=B得出B⊆A,分別求出當(dāng)B=φ,B≠φ時求出a的范圍.
點評:此題考查了交集、補集的混合運算,(2)問要分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集I=R,已知集合M={x|(x+3)2≤0},N={x|2x2=(
12
)
x-6
}

(Ⅰ)求(?IM)∩N;
(Ⅱ)記集合A={2},已知B={x|a-1≤x≤5-a,a∈R},若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集I=R,已知集合M={x|x2-10x+24<0},N={x|x2-2x-15≤0}.
(1)求(?IM)∩N;
(2)記集合A=(?IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.
(Ⅰ)求(?IM)∩N;
(Ⅱ)記集合A=(?IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)全集I=R,已知集合M={x|x2-10x+24<0},N={x|x2-2x-15≤0}.
(1)求(?IM)∩N;
(2)記集合A=(?IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案