已知拋物線C1:y=x2,橢圓C2:x2+=1.
(1)設l1,l2是C1的任意兩條互相垂直的切線,并設l1∩l2=M,證明:點M的縱坐標為定值;
(2)在C1上是否存在點P,使得C1在點P處切線與C2相交于兩點A、B,且AB的中垂線恰為C1的切線?若存在,求出點P的坐標;若不存在,說明理由.
【答案】分析:(1)求導,設切點分別為(x1,x12),(x2,x22),求出直線l1,l2的方程,根據(jù)l1⊥l2可得結(jié)果;
(2)設P(x,x2),寫出C1在點P處切線方程,聯(lián)立它與橢圓的方程,消去y,得到關(guān)于x一元二次方程,△>0,利用韋達定理和(1)的結(jié)論即可求出點P的坐標.
解答:解:(1)y′=2x,
設切點分別為(x1,x12),(x2,x22
則l1方程為y-x12=2x1(x-x1
即y=2x1x-x12
l2方程為y=2x2x-x22
由l1⊥l2得2x12x2=-1

所以,
即點M的縱坐標為定值
(2)設P(x,x2),
則C1在點P處切線方程為:y=2xx-x2
代入C2方程4x2+y2-4=0
得4x2+(2xx-x2)-4=0
即(4+4x2)x2-4x3x+x4-4=0
設A(x3,y3),B(x4,y4

△=16x6-16(1+x2)(x4-4)=16(4+4x2-x4)>0   ③
由(1)知
從而,

進而得
解得,且滿足③
所以這樣點P存在,其坐標為
點評:此題是個難題.本題考查了橢圓與拋物線的標準方程、直線與圓錐曲線的位置關(guān)系,以及利用導數(shù)研究拋物線的切線方程,是一道綜合性的試題,考查了學生綜合運用知識解決問題的能力.其中問題(2)是一個開放性問題,考查了同學們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y=2x2與拋物線C2關(guān)于直線y=-x對稱,則C2的準線方程為( 。
A、x=
1
8
B、x=-
1
8
C、x=
1
2
D、x=-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y=x2,橢圓C2:x2+
y24
=1.
(1)設l1,l2是C1的任意兩條互相垂直的切線,并設l1∩l2=M,證明:點M的縱坐標為定值;
(2)在C1上是否存在點P,使得C1在點P處切線與C2相交于兩點A、B,且AB的中垂線恰為C1的切線?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y=x2+2x和C:y=-x2+a,如果直線l同時是C1和C2的切線,稱l是C1和C2的公切線,公切線上兩個切點之間的線段,稱為公切線段.
(Ⅰ)a取什么值時,C1和C2有且僅有一條公切線?寫出此公切線的方程;
(Ⅱ)若C1和C2有兩條公切線,證明相應的兩條公切線段互相平分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y=x2+2xC2:y=-x2+a.a(chǎn)取何值時C1和C2有且僅有一條公切線l,求出公切線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y=x2,F(xiàn)為拋物線的焦點,橢圓C2
x2
2
+
y2
a2
=1
(0<a<2);
(1)若M是C1與C2在第一象限的交點,且|MF|=
3
4
,求實數(shù)a的值;
(2)設直線l:y=kx+1與拋物線C1交于A,B兩個不同的點,l與橢圓C2交于P,Q兩個不同點,AB中點為R,PQ中點為S,若O在以RS為直徑的圓上,且k 2
1
2
,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案