已知x=-是函數(shù)f(x)=ln(x+1)-x+x2的一個(gè)極值點(diǎn)。
(1)求a的值;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程

(1)a=2.(2) y=x+ln2- 。

解析試題分析:(1)先對原函數(shù)求導(dǎo),得到極值點(diǎn),而極值點(diǎn)是 方程的根,最后解方程即可.
(2)曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率k=,再求出f(1),最后可以求出切線方程.
(1)f(x)="ln(x+1)-" x+x2,∴f'(x)=-1+ax
由于x=-是函數(shù)f(x)的一個(gè)極值點(diǎn).∴f'(-)="0," 即2-1-=0,故a=2.
(2)由(1)知:f'(x)= +2x-1  從而曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率k=,又f(1)=ln2,
故曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x+ln2- 。
考點(diǎn):導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)求切線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ex,a,bR,且a>0.
⑴若a=2,b=1,求函數(shù)f(x)的極值;
⑵設(shè)g(x)=a(x-1)ex-f(x).
①當(dāng)a=1時(shí),對任意x (0,+∞),都有g(shù)(x)≥1成立,求b的最大值;
②設(shè)g′(x)為g(x)的導(dǎo)函數(shù).若存在x>1,使g(x)+g′(x)=0成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)滿足.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間(-3,3)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的導(dǎo)函數(shù),,且函數(shù)的圖象過點(diǎn)
(1)求函數(shù)的表達(dá)式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上為增函數(shù),,
(1)求的值;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知函數(shù),設(shè)的導(dǎo)數(shù),
(1)求的值;
(2)證明:對任意,等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),曲線處的切線斜率為0
求b;若存在使得,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)為偶函數(shù),且曲線在點(diǎn)處的切線的斜率為.
(1)確定的值;
(2)若,判斷的單調(diào)性;
(3)若有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=xlnx-x2.
(1)當(dāng)a=1時(shí),函數(shù)y=f(x)有幾個(gè)極值點(diǎn)?
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)=xlnx-x2有兩個(gè)極值?若存在,求實(shí)數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案